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Abstract This paper addresses a new continuous approach based on the DC (Difference
of Convex functions) programming and DC algorithms (DCA) to Binary quadratic programs
(BQP) which play a key role in combinatorial optimization. DCA is completely different
from other avalaible methods and featured by generating a convergent finite sequence of fea-
sible binary solutions (obtained by solving linear programs with the same constraint set) with
decreasing objective values. DCA is quite simple and inexpensive to handle large-scale prob-
lems. In particular DCA is explicit, requiring only matrix-vector products for Unconstrained
Binary quadratic programs (UBQP), and can then exploit sparsity in the large-scale setting. To
check globality of solutions computed by DCA, we introduce its combination with a custom-
ized Branch-and-Bound scheme using DC/SDP relaxation. The combined algorithm allows
checking globality of solutions computed by DCA and restarting it if necessary and con-
sequently accelerates the B&B approach. Numerical results on several series test problems
provided in OR-Library (Beasley in J Global Optim, 8:429–433, 1996), show the robust-
ness and efficiency of our algorithm with respect to standard methods. In particular DCA
provides ε-optimal solutions in almost all cases after only one restarting and the combined
DCA-B&B-SDP always provides (ε−)optimal solutions.
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1 Introduction

A general binary quadratic program is of the form

α := min

{
f (x) = 1

2
xT Qx + qT x : x ∈ F = S ∩ {0, 1}n

}
, (BQP)

where Q is a symmetric real n × n matrix, q ∈ IRn and S is a polyhedral convex set of IRn ,
i.e.,

S :=
{

x ∈ IRn :
〈
ai , x

〉
= bi i = 1, 2, . . . , p

〈
ai , x

〉

≤ bi i = p + 1, . . . ,m

}
with m ≥ 0. (1)

Unconstrained binary quadratic programs correspond to the particular case where F = S ∩
{0, 1}n = {0, 1}n .

α := min

{
f (x) = 1

2
xT Qx + qT x : x ∈ {0, 1}n

}
. (UBQP)

Binary quadratic programs (BQP) appear in many areas including economics, machine sched-
uling, solid-state physics, traffic message management, computer-aided design and location,
facility location, Frequency Assignment, Register Allocation, Pattern Matching, Analysis of
Biological and Archeological Data, see [9,20]. A lot of methods, heuristic or deterministic
have been developed for their solutions, among them: Hammer-Rudeanu [10], Adams-Sher-
ali [2], Pardalos-Rodgers [35] Jha-Pardalos [19], Adams-Dearing [1], Helmberg-Rendl [13],
Glover-Kochenberger-Alidaee [8], Le Thi-Pham Dinh [25], Billonnet-Elloumi [5]). In the
deterministic approaches, Branch-and-Bound scheme in [25,35] and SDP technique with
cutting planes in [13] were developed for solving BQP. The work using SDP technique [5]
for unconstrained binary quadratic programs (UBDP) only deals with finding initial solutions
for the MIQP solver of CPLEX 8.1 (ILOG 2002) in order to further improve the convergence
speed of B&B scheme in MIQP. Billonnet-Elloumi have in fact proposed two approaches
for computing the lower bounds (LB) for the optimal value α, The first approach, related
to the greatest quadratic convex minorization with the matrix of the form Q − ρ I such
that ρ ≤ λ1(Q), (the smallest eigenvalue λ1(Q) of Q), is not new: it was used in [21–
25,32,34], whereas the second one computes the best LB corresponding to the matrix of the
form Q−Diag(d) by using the solver SDP_S designed by Delaporte-Jouteau-Roupin [6] for
solving the dual (DSDP) of the (SDP) problem, which is the equivalent formulation of the
above mentioned problem of computing the best LB. Note that the (DSDP) problem is noth-
ing but the well known SDP relaxation of unconstrained binary quadratic programs (UBQP)
in Poljak-Rendl-Wolkowicz [39]. SDP_S works with SBmethod, an SDP solver based on
the spectral bundle method of Helmberg-Rendl [14]. SDP techniques for computing lower
bounds for nonconvex quadratic programs including (BQP) were largely investigated by
Le Thi-Pham Dinh-Nguyen Canh [32,34].

The main contribution of our work relies on a new deterministic approach based on DC
programming and DCA for globally solving binary quadratic programs (BQP). Equivalent
DC programs of (BQP) are first established by using exact penalty techniques in DC pro-
gramming developed in [29,30]. The resulting DC programs then are tackled by DCA.

DC programming and DCA were introduced by Pham Dinh Tao in 1985, as an extension
of his earlier subgradient algorithms for concave programming, and extensively developed
by Le Thi Hoai An and Pham Dinh Tao since 1994. The DCA has been successfully applied
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to real world nonconvex programs in different fields of Applied Sciences, to which it quite
often gave global solutions and proved to be more robust and more efficient than related
standard methods, especially in large scale settings. It is worth noting that DCA is one of
the rare efficient algorithms for nonsmooth nonconvex programming which allows solving
large-scale DC programs (see [22,26,28,32,34,36,37]).

To globalize the local DCA, its combination with a customized Branch-and-Bound scheme
(B&B) using, respectively, DC relaxation/SDP relaxation techniques [12,44] is introduced.
The combined algorithm allows checking globality of solutions computed by DCA and
restarting it if necessary, and, consequently, accelerates the B&B approach.

The paper is organized as follows. After a short introduction presenting the general model
of binary quadratic programs, DC programming and DCA are briefly outlined in Sect. 2. The
main contents of Sect. 3 concerns DC reformulations of (BQP) and the description of DCA
applied to equivalent DC programs. A combination of DCA with a customized Branch-and-
Bound and relaxation techniques is developed in Sect. 4. Finally computational experiments
are reported in the last section as well as some conclusions.

2 DC programming and DCA

To give the reader an easy understanding of the theory of DC programming and DCA, we
first briefly outline these tools in the following.

Let �0(IRn) denote the convex cone of all the lower semicontinuous proper (i.e., not iden-
tically equal to +∞) convex functions defined on IRn and taking values in IR ∪ {+∞}, and
let ‖.‖ be the Euclidean norm on IRn . For θ : IRn → IR ∪ {+∞}, the effective domain of θ ,
denoted dom θ , is defined by

dom θ := {x ∈ IRn : θ(x) < +∞}.
For a nonempty set C ⊂ IRn, co C denotes the convex hull of C and coC the closure of
co C .

A DC program is defined by

α = inf
{

f (x) := g(x)− h(x) : x ∈ IRn} (Pdc)

with g, h ∈ �0(IRn). Such a function f is called DC function, and g− h, DC decomposition
of f while the convex functions g and h are DC components of f . It should be noted that a
constrained DC program, whose feasible set C is a nonempty closed convex set, can always
be transformed into a unconstrained DC program by adding the indicator function χC of C
(χC (x) = 0 if x ∈ C,+∞ otherwise) to the first DC component g. In DC programming
[36], the convention

(+∞)− (+∞) := +∞ (2)

has been adopted to avoid the ambiguity on the determination of (+∞) − (+∞). Such a
case does not present any interest and can be discarded. In fact, we are actually concerned
with the following problem

α = inf{ f (x) := g(x)− h(x) : x ∈ dom h}, (3)

which is equivalent to (Pdc) under the convention (2). It should be noted that a constrained
DC program (ϕ,ψ ∈ �0(IRn) and C ⊂ IRn being a nonempty closed convex set)

α = inf{ϕ(x)− ψ(x) : x ∈ C} (4)
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is equivalent to the unconstrained DC program by adding the indicator function χC of C
(χC (x) = 0 if x ∈ C,+∞ otherwise) to the first DC component ϕ:

α = inf
{
g(x)− h(x) : x ∈ IRn},

where g := ϕ + χC and h := ψ . The form (3) is preferred when one must emphasize the
convex feasible set C , for example in DC relaxation techniques for B&B scheme presented
in Sect. 4.1.

Let

g∗(y) := sup
{〈x, y〉 − g(x) : x ∈ IRn}

be the conjugate function of g. By using the fact that every function h ∈ �0(IRn) is charac-
terized as a pointwise supremum of a collection of affine functions, say

h(x) := sup
{〈x, y〉 − h∗(y) : y ∈ IRn},

we have

α = inf
{
g(x)− sup

{〈x, y〉 − h∗(y) : y ∈ IRn} : x ∈ IRn}
= inf

{
α(y) : y ∈ IRn}

with

(Py) α(y) := inf
{
g(x)− [〈x, y〉 − h∗(y)] : x ∈ IRn}.

It is clear that (Py) is a convex program and

α(y) = h∗(y)− g∗(y) if y ∈ dom h∗, and +∞ otherwise. (5)

Finally we state the dual program of (Pdc)

α = inf
{
h∗(y)− g∗(y) : y ∈ dom h∗

}
,

that is written, in virtue of the convention (2):

(Ddc) α = inf
{
h∗(y)− g∗(y) : y ∈ IRn}.

The dual program of (Pdc) is of the form

α = inf
{
h∗(y)− g∗(y) : y ∈ dom h∗

}
that is written, in virtue of the natural convention in DC programming, say +∞− (+∞) =
+∞:

α = inf
{
h∗(y)− g∗(y) : y ∈ Y

}
. (Ddc)

where

g∗(y) := sup
{〈x, y〉 − g(x) : x ∈ IRn}

is the conjugate function of g.
Remark that if the optimal value α is finite then dom g ⊂ dom h and dom h∗ ⊂ dom g∗.
If g or h are polyhedral convex functions then (Pdc) is called a polyhedral DC program,

which plays a main role in nonconvex programming (see [21,22,28,36,37] and references
therein), and enjoys interesting properties (from both theoretical and practical viewpoints)

123



J Glob Optim (2010) 48:595–632 599

concerning the local optimality and the convergence of the DCA. Recall that, for θ ∈ �0(IRn)

and x0 ∈ dom θ, ∂θ(x0) denotes the subdifferential of θ at x0, i.e.,

∂θ(x0) :=
{

y ∈ IRn : θ(x) ≥ θ(x0)+ 〈x − x0, y〉,∀x ∈ IRn} (6)

(see [15,40]). The subdifferential ∂θ(x0) is a closed convex set in IRn . It generalizes the
derivative in the sense that θ is differentiable at x0 if and only if ∂θ(x0) is a singleton which
is exactly {∇θ(x0)}. The domain of ∂θ , denoted dom ∂θ, is defined by: dom ∂θ := {x ∈ dom
θ : ∂θ(x) �= ∅}. Calling ri C the relative interior of the convex set C , there holds ([15,40]):

ir(dom θ) ⊂ dom ∂θ ⊂ dom θ (7)

DC programming investigates the structure of the vector space DC(IRn) := �0(IRn) −
�0(IRn), DC duality and optimality conditions for DC programs. The complexity of DC pro-
grams resides, of course, in the lack of practical optimal globality conditions. We developed
instead the following necessary local optimality conditions for DC programs in their primal
part, by symmetry their dual part is trivial (see [21,22,28,36,37]):

∂h
(
x∗
) ∩ ∂g

(
x∗
) �= ∅ (8)

(such a point x∗ is called critical point of g − h or for (Pdc)), and

∅ �= ∂h
(
x∗
) ⊂ ∂g

(
x∗
)
. (9)

The condition (9) is also sufficient (for local optimality) in many important classes of DC
programs. In particular it is sufficient for the next cases quite often encountered in practice:

• In polyhedral DC programs with h being a polyhedral convex function ( [22,28,36,37]).
In this case, if h is differentiable at a critical point x∗, then x∗ is actually a local minimizer
for (Pdc). Since a convex function is differentiable everywhere except for a set of measure
zero, one can say that a critical point x∗ is almost always a local minimizer for (Pdc).

• In case the function f is locally convex at x∗ (see [28,36] and references therein). Note
that, if h is polyhedral convex, then f = g − h is locally convex everywhere h is differ-
entiable.

The transportation of global solutions between (Pdc) and (Ddc) is expressed by:⎡
⎣ ⋃

y∗∈D
∂g∗(y∗)

⎤
⎦ ⊂ P,

[ ⋃
x∗∈P

∂h(x∗)
]
⊂ D (10)

where P and D denote the solution sets of (Pdc) and (Ddc), respectively. Under technical
conditions, this transportation holds also for local solutions of (Pdc) and (Ddc) (see [28,36]
and references therein).

Based on local optimality conditions and duality in DC programming, the DCA consists
in constructing of two sequences {xk} and {yk} of trial solutions of the primal and dual
programs, respectively, such that the sequences {g(xk) − h(xk)} and {h∗(yk) − g∗(yk)}
are decreasing, and {xk} (resp. {yk}) converges to a primal feasible solution x̃ (resp. a dual
feasible solution ỹ ) satisfying local optimality conditions and

x̃ ∈ ∂g∗ (ỹ ) , ỹ ∈ ∂h (̃x). (11)

The sequences {xk} and {yk} are determined in the way that xk+1 (resp. yk+1) is a solution
to the convex program (Pk) (resp. (Dk+1)) defined by (x0 ∈ dom ∂h being a given initial
point and y0 ∈ ∂h(x0) being chosen)
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(Pk) inf{g(x)− [h(xk)+ 〈x − xk, yk〉] : x ∈ IRn},
(Dk+1) inf{h∗(y)− [g∗(yk)+ 〈y − yk, xk+1〉] : y ∈ IRn}.

The DCA has the quite simple interpretation: at the k-th iteration, one replaces in the
primal DC program (Pdc) the second component h by its affine minorization h(k)(x) :=
h(xk)+〈x− xk, yk〉 defined by a subgradient yk of h at xk to give birth to the primal convex
program (Pk), the solution of which is nothing but ∂g∗(yk). Dually, a solution xk+1 of (Pk)

is then used to define the dual convex program (Dk+1) obtained from (Ddc) by replacing the
second DC component g∗ with its affine minorization (g∗)(k)(y) := g∗(yk)+〈y− yk, xk+1〉
defined by the subgradient xk+1 of g∗ at yk : the solution set of (Dk+1)is eaxctly ∂h(xk+1).
The process is repeated until convergence. DCA performs a double linearization with the
help of the subgradients of h and g∗ and the DCA then yields the next scheme: (starting from
given x0 ∈ dom ∂h)

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk), ∀k ≥ 0. (12)

DCA’s distinctive feature relies upon the fact that DCA deals with the convex DC com-
ponents g and h but not with the DC function f itself. DCA is one of the rare algorithms
for nonconvex nonsmooth programming. Moreover, a DC function f has infinitely many
DC decompositions which have crucial implications for the qualities (speed of convergence,
robustness, efficiency, globality of computed solutions,...) of DCA. For a given DC program,
the choice of optimal DC decompositions is still open. Of course, this depends strongly on
the very specific structure of the problem being considered. In order to tackle the large-scale
setting, one tries in practice to choose g and h such that sequences {xk} and {yk} can be easily
calculated, i.e., either they are in an explicit form or their computations are inexpensive.

We mention now the main convergence properties of DCA. Let C (resp. D) a convex set
containing the sequence {xk} (resp. {yk}) and ρ(g,C) (or ρ(g) if C = IRn) the modulus of
strong convexity of g on C given by:

ρ(g,C) = sup
{
ρ ≥ 0 : g − (ρ/2)‖ · ‖2 be convex on C

}
.

DCA’s convergence properties:
DCA is a descent method without linesearch which enjoys the following properties:

i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)− h(xk+1) = g(xk)− h(xk) iff yk ∈ ∂g(xk) ∩ ∂h(xk), yk ∈ ∂g(xk+1) ∩
∂h(xk+1) and [ρ(g,C)+ρ(h,C)]‖xk+1− xk‖ = 0. Moreover if g or h are strictly
convex on C then xk = xk+1.
In such a case DCA terminates at the kth iteration (finite convergence of DCA)

• h∗(yk+1) − g∗(yk+1) = h∗(yk) − g∗(yk) iff xk+1 ∈ ∂g∗(yk) ∩ ∂h∗(yk), xk+1 ∈
∂g∗(yk+1)∩ ∂h∗(yk+1) and [ρ(g∗, D)+ ρ(h∗, D)]‖yk+1− yk‖ = 0. Moreover if
g∗ or h∗ are strictly convex on D, then yk+1 = yk .
In such a case DCA terminates at the kth iteration (finite convergence of DCA).

ii) If ρ(g,C)+ ρ(h,C) > 0 (resp. ρ(g∗, D)+ ρ(h∗, D) > 0)) then the series {‖xk+1 −
xk‖2 (resp. {‖yk+1 − yk‖2} converges.

iii) If the optimal value α of problem (Pdc) is finite and the infinite sequences {xk} and
{yk} are bounded then every limit point x̃ (resp. ỹ) of the sequence {xk} (resp. {yk}) is
a critical point of g − h (resp. h∗ − g∗).

iv) DCA has a linear convergence for general DC programs.
v) DCA has a finite convergence for polyhedral DC programs.

123



J Glob Optim (2010) 48:595–632 601

It is worth noting that for suitable DC decompositions, DCA generates almost standard
algorithms in convex and nonconvex programming. For a complete study of DC programming
and DCA the reader is referred to [21,22,28,36,37] and references therein.

3 DC reformulation and DCA for solving the equivalent DC programs

In order to apply DCA, we need to reformulate (BQP) as a DC program by using exact
penalty techniques in DC programming. According to Le Thi et al. [30], the exact penalty is
stated as follows

Theorem 1 Let K be a nonempty bounded polyhedral convex set, f be a finite concave
function on K and p be a finite nonnegative concave function on K . Assume that the problem
(P) be feasible

(P) α = inf{ f (x) : x ∈ K , p(x) ≤ 0},
whose solution set is denoted by P and let (Pτ ), for τ ≥ 0, be the penalized problem

(Pτ ) α(τ) = inf{ f (x)+ τp(x) : x ∈ K },
whose solution set is denoted by Pτ . Then there exists τ0 ≥ 0 such that for all τ > τ0, the two
problems (P) and (Pτ ) have the same optimal value and the same solution set. The optimal
parameter τ0 is determined as follows:

(a) if the vertex set V (K ) of K is contained in {x ∈ K : p(x) ≤ 0}, then τ0 = 0 and
α(0) = α. Conversely α(0) = α if and only if inf{ f (x) : x ∈ V (K ), p(x) > 0} ≥ α
(resp. inf{ f (x) : x ∈ K , p(x) > 0} ≥ α);

(b) if α(0) < α then τ0 := max

{
α − f (x)

p(x)
: x ∈ V (K ), p(x) > 0

}
, and there hold

(b1) α(τ) = α if and only if τ ≥ τ0,

(b2) Pτ ∩ {x ∈ K : p(x) ≤ 0} �= ∅ ⇔ P ⊂ Pτ ⇔ τ ≥ τ0,

(b3) Pτ = P if τ > τ0.

Remark 2 It has been proved in [29] that Theorem 1 still holds true in case the objective
function f is a DC function.

To apply this theorem we first reformulate Problem (BQP) as a concave quadratic pro-
gram (a particular DC program of minimizing a concave quadratic function over a polyhedral
convex set) by using the binary character of x . The motivation of choosing such DC decom-
position will pointed out in Remark 6

Consider the following quadratic function, with ρ being a given real number:

fρ(x) = 1

2
xT (Q − ρ In)x + qT x + 1

2
ρxT e(n), (13)

where e(n) ∈ IRn is the vector of ones and In is the identity matrix of order n. It is clear that
fρ and the objective function f in (BQP) agree on {0, 1}n and a fortiori on the feasible set
of (BQP).

So if we choose ρ ≥ λn(Q), the largest eigenvalue of matrix Q, then the function fρ
becomes concave.
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On the other hand, let the function p be defined by

p(x) = p1(x) :=
n∑

i=1

min {xi , 1− xi }. (14)

It is easy to see that p1 is finite concave on IRn , (more exactly −p1 is finite polyhedral
convex on IRn) and p1(x) ≥ 0 for all x ∈ K := S ∩ [0, 1]n}. Moreover we have{

x ∈ IRn : x ∈ S, x ∈ {0, 1}n} = {x ∈ K : p1(x) ≤ 0}.
Hence the binary quadratic program (BQP) can be rewritten as

α = min { fρ(x) : x ∈ K , p1(x) ≤ 0} (15)

Consider, from now on, the polyhedral DC program (with ρ ≥ λn(Q) and τ > τ0) :
min { fρ,τ (x) := fρ(x)+ τp1(x) : x ∈ K }, (16)

that is a nonsmooth nonconvex program.
As a result of Theorem 1, we get

Proposition 3 The penalized Problem (16) is equivalent to Problem (15) in the sense given
in Theorem1.

Remark 4 (i) We have fρ(x) − f (x) = 1
2ρxT [e(n) − x] ≥ 0,∀x ∈ [0, 1]n if ρ ≥ 0.

More precisely the difference is positive on [0, 1]n�{0, 1}n if ρ > 0. Theoretically,
by giving ρ large values, one might force DCA applied to (16) to converge to feasible
solutions of (BQP). That is an interesting feature of the DC decomposition ( 13).

(ii) In the case K = S ∩ [0, 1]n = [0, 1]n , i.e., there is no linear constraint, if we choose
ρ > λn(Q), the function fρ is strictly concave. As a result, we obtain directly the
following equivalent DC program of (BQP)

min

{
fρ(x) = 1

2
xT (Q − ρ In)x + qT x + 1

2
ρxT e(n) : x ∈ [0, 1]n

}
(17)

(iii) Another usual exact penalty is given by p2(x) = ∑n
i=1 xi (1 − xi ), which leads also

to an equivalent polyhedral DC program.
(iv) Other equivalent DC programs can be estabished by the exact penalty techniques in

DC programming developed in [29].

The DC decomposition of fρ,τ is derived from the concavity of the functions fρ and τp1.
It leads to the DC program with

g(x) = χK (x) and h(x) = − fρ(x)− τp1(x), (18)

where χK is the indicator function of K .

Remark 5 It is worthwhile noting that a DC function has infinitely many DC decompositions
which have crucial impacts on the qualities (speed of convergence, robustness, efficiency,
globality of computed solutions, ...) of DCA. For a given DC program, the choice of opti-
mal DC decompositions is still open. Of course, this depends strongly on the very specific
structure of the problem being considered. In order to tackle the large scale setting, one tries
in practice to choose g and h such that sequences {xk} and {yk} can be easily calculated, i.e.
either they are in explicit form or their computations are inexpensive. The advantages of the
above DC decomposition (15 ) will be discussed below in the description of the resulting
DCA.
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According to Sect. 2, performing DCA for Problem (16) amounts to computing the two
sequences {xk} and {yk} defined by

yk ∈ ∂h(xk), xk+1 ∈ ∂g∗(yk)

In other words, we have to compute the subdifferentials ∂h and ∂g∗. As usually, ∂h is
often explicitly computed with the help of known rules in convex analysis. Here we have

∂h = ∂(− fρ)+ τ∂(−p1) (19)

with the explicit computations of ∂(− fρ) and ∂(−p) . Indeed,

∂(− fρ) = −(Q − ρ In)x − q − 1

2
ρe(n) (20)

and since

−p1(x) =
n∑

i=1

max{−xi , xi − 1} =
n∑

i=1

max

{(
−e(n)i

)T
x,
(

e(n)i

)T
x − 1

}

where {e(n)1 , . . . , e(n)n } is the canonical basis of IRn . It follows that

∂(−p1)(x) =
n∑

i=1

ui where ui =

⎧⎪⎨
⎪⎩
−e(n)i if xi < 0.5
e(n)i if xi > 0.5
belongs to [−e(n)i , e(n)i ] if xi = 0.5

(21)

As for computing ∂g∗(y), we need only to solve the following linear program

min{−〈x, y〉 : x ∈ K }. (22)

Remark 6 The primal sequence {xk} can then be included in the vertex set V (K ) of K . This
property constitutes one of interesting advantages of the DC decomposition (13), knowing
that V (K ) contains the feasible set F of (BQP).

We are now in a position to describe the DCA applied to Problem (16)

Algorithm 1 (DCA applied to (16))

1. Set k = 1, let ε1, ε2 be small enough positive number. Choose an initial point xk (not
necessarily in K ).

2. Compute yk ∈ ∂h(xk) by using (19), (20) and (21)
3. Compute xk+1 ∈ ∂g∗(yk) ∩ V (K ) by solving the linear program (22)
4. If either ∥∥∥xk+1 − xk

∥∥∥ ≤ ε1

or ∥∥∥( fρ + τp1)
(

xk+1
)
− ( fρ + τp1)

(
xk
)∥∥∥ ≤ ε2

then STOP and xk+1 is the computed solution.
Otherwise, set k ← k + 1 and go to Step 2.

Performing DCA amounts to solving a finite number of linear programs (22) having the
same constraint set K . Moreover, for unconstrained binary quadratic programs, DCA is
explicit: K = [0, 1]n in (22 ), according to (17). Its finite convergence will be emphasized
in Theorem 9.
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Remark 7 (Practical choice of the parameter penalty τ > τ0 and its use in our combined
DCA and BB).

In general it is difficult to compute explicitly any upper bound of τ0 in Problem (16). In
practice we take τ sufficiently large in order for Problem (16) to be equivalent to Problem
(BQP). To check equivalence of these problems, we use the exact penalty results in Theorem
1 : α(τ) ≤ α for every τ ≥ 0 and if an optimal solution to Problem (16) with a given τ ≥ 0
is feasible to Problem ( BQP) then it is also an optimal solution of the latter one and τ ≥ τ0.

3.1 Special feature of DCA for Problem(16)

It is crucial for local algorithms applied to the penalty equivalent (16) to provide feasible
solutions x∗ of the binary quadratic program (BQP), i.e., p1(x∗) = 0. We shall prove that
DCA bears this feature, due to the fact that (16) is a polyhedral DC program with the first
DC component being polyhedral convex.

Theorem 8 (i) There is a positive constant τ1 such that for all τ > τ1 and all x ∈
V (K ), x ′ ∈ ∂g∗(∂h(x)) ∩ V (K ), there holds

( fρ + τp1)
(
x ′
) ≤ ( fρ + τp1)(x), p1(x

′) ≤ p1(x) (23)

(ii) For all τ > τ1 and all primal sequence {xk} ⊂ V (K ) generated by DCA applied to
the penalty equivalent (16), both sequences

{
fρ(xk)+ τp1

(
xk
)}

and
{

p1
(
xk
)}

are
decreasing.

Proof As mentionned above, V (K ) always contains the feasible solution set F of (BQP).
Hence, if V (K ) is contained in F , i.e., V (K ) = F , then the assertion is trivial with τ1 = 0.
Otherwise let

τ1 := max

{
fρ(x)− fρ(x ′)
p1(x ′)− p1(x)

: (x, x ′) ∈ V (K )× V (K ), p1(x
′) > p1(x)

}
,

then 0 ≤ τ1 < +∞ since V (K ) is a finite. Consider now τ > τ1 and x, x ′ given as above.
Assume for contradiction that such that p1(x ′) > p1(x). Then

τ
[

p1(x
′)− p1(x)

]
> τ1[p1(x

′)− p1(x)] ≥ fρ(x)− fρ(x
′).

Hence

fρ(x
′)+ τp1(x

′) > fρ(x)+ τp1(x),

it contradicts the fact that DCA is a descent method and x ′ is a next step of DCA from x . The
assertion (ii) then is immediate. ��

The enhancing features of DCA applied to the penalty equivalent (16) can be summarized
in the next Theorem whose proof is immediate from Theorem 8 and the general convergence
of DCA applied to polyhedral DC program ([28,36]).

Theorem 9 (Convergence properties of Algorithm1) For ρ ≥ λn(Q) and τ > max{τ0, τ1},
there hold

(i) Algorithm1 generates a finite sequence {xk} contained in V (K ) such that both the
sequences { fρ(xk)+ τp1(xk)} and {p1(xk)} are decreasing.

(ii) If xr ∈ {0, 1}n, then xk ∈ {0, 1}n for all k ≥ r .
(iii) The sequence {xk} converges to x∗ ∈ V (K ) after a finite number of iterations. More-

over if ρ > λn(Q), then {xk} is stationary at x∗, i.e., there is some r such that
x∗ = xr+1 = xr .
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3.2 Initial point and strategies of launching DCA

Theorem 9 says that, starting with a feasible solution of the binary quadratic program (BQP),
DCA provides a better one, although it works on a continuous feasible set. A good feasible
point can be found by applying beforehand DCA to the concave programming problem as
in [27] :

0 = min

{
n∑

i=1

min {xi , 1− xi } : x ∈ K

}
. (24)

Problem (24) is a polyhedral DC program with known optimal value and whose solution
set is exactly the feasible solution set F of ( BQP). Fortunately, as for linear complemen-
tarity problems [27,38], DCA, with starting point x not necessarily feasible but such that
p1(x) ≤ 0, converges, almost always in practice, to a global solution of (24).

Another efficient strategy improves upper bounds by launching DCA from an optimal
solution of convex programs formed by DC relaxation or SDP relaxation, which will be
developed in the next section.
When do we restart DCA?

During the B&B process we can restart DCA to improve the current best upper bound.
Usually, an upper bound is obtained when a binary solution is found, we call this upper
bound (the value of f at this solution) a Score. However, by using the exact penalty tech-
nique, fρ,τ (x),with x ∈ K , is also an upper bound and is denoted U B f . So in our algorithm,
we will restart DCA when the following condition is satisfied

fρ,τ (x̄) < min{Score,U B f }
(
1+ 10e−3). (25)

where x̄ is an optimal solution of the current relaxed convex program (computing lower
bound).

4 Global optimization algorithm

In what follows, we will establish an algorithm for globally solving the binary quadratic pro-
gram (BQP). This is a combination of DCA presented in the previous section and a customized
Branch-and-Bound approach. We first discuss two basic operations in any Branch-and-Bound
scheme : bound estimation and branching procedure.

4.1 DC relaxation technique for lower bounding in B&B

Lower bounding procedure—which is based, in general, on the statement of a convex pro-
gram whose optimal value is a lower bound for the optimal value of the nonconvex program
being considered—plays an important role in the construction of B&B scheme in global opti-
mization: the tighter the lower bound is, the more efficient the B&B will be. Let us outline
now the DC relaxation technique for computing lower bounds in DC programming.

4.1.1 Convex hull of nonconvex functions

Consider the nonconvex program

α := inf{ψ(x) : x ∈ IRn}, (26)
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where ψ : IRn → IR∪ {+∞} is proper (dom ψ �= ∅) and has an minorization affine on IRn .
The optimal way to convexify (26) passes by the convex hull of ψ defined by [15,40]:

co ψ(x) := inf

{∑
i

λiψ(xi ) : λi ≥ 0,
∑

i

λi = 1, x ∈ dom ψ, x =
∑

i

λi xi

}
, (27)

where the infimum is taken over all representations of x as a convex combination of elements
xi , such that only finitely many coefficients λi are nonzero. The convex function co ψ with

dom co ψ = co dom ψ (28)

is the greatest convex function majorized by ψ . It leads to the convex programs with the
same optimal value

α := inf{co ψ(x) : x ∈ IRn} = inf{co ψ(x) : x ∈ IRn}. (29)

It is well known that [15]

(i) Arg minψ ⊂ Arg min co ψ ⊂ Arg min co ψ
(ii) co (Arg minψ) ⊂ co (Arg minψ) ⊂ Arg min co ψ

(iii) co ψ = ψ∗∗.
(iv) If, in addition,ψ is lower-semicontinuous and 1-coercive (the latter means lim‖x‖→+∞

ψ(x)
‖x‖ = +∞), then co ψ = co ψ = ψ∗∗.

Remark 10 (i) Problem (26 ) can be rewritten as

α := inf{ψ(x) : x ∈ dom ψ}, (30)

while in (29), one can replace x ∈ IRn by x ∈ co domψ . As usually in convex analysis,
a function ψ : C ⊂ IRn → IR is often identified to its extension ψ + χC to the whole
IRn .

(ii) For C ⊂ IRn and ψ : IRn → IR ∪ {+∞} with C ⊂ dom ψ , we denote by co Cψ

the convex hull of ψ on C, i.e., coCψ := co (ψ + χC ). Likewise coCψ stands for
co(ψ + χC ).

Finding the convex hull of a nonconvex function is in general very difficult, except for
those of concave functions over bounded polyhedral convex sets (polytopes). One seeks
instead some convex relaxations more tractable to compute lower bounds for the optimal
value α as by DC relaxations presented below.

4.1.2 Convex hull of concave functions over bounded polydedral convex sets

Let K be a nonempty bounded polyhedral convex set whose vertex set is V (K ) :=
{v1, . . . , vm}. Then K = co V (K ). The vertices v1, . . . , vm are said affinely independent if
there are no real numbers λi , i = 1, . . . ,m not all zero such that [15,40]

m∑
i=1

λi = 0 and
m∑

i=1

λiv
i = 0. (31)

In this case K is called an (m − 1)− simplex and every x ∈ K is uniquely expressible as
convex combination of v1, . . . , vm . If ψ is a finite concave on K then the expression (27)
for coKψ becomes simpler and computable ([16,17,41,42])
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Theorem 11 If ψ is a finite concave on K , there hold

(i) coKψ is the polyhedral convex function on K defined by

coKψ(x) = min

{
m∑

i=1

λiψ(v
i ) : λi ≥ 0,

m∑
i=1

λi = 1, x =
m∑

i=1

λiv
i

}
. (32)

Moreover coKψ and ψ agree on V (K ).
(ii) If K is an (m − 1)−simplex, then coKψ is the affine function determined by

coKψ(x) =
m∑

i=1

λiψ(v
i ), λi ≥ 0,

m∑
i=1

λi = 1, x =
m∑

i=1

λiv
i . (33)

4.1.3 Convex hull of separable function

Letψ = (ψ1, . . . , ψm) be a separable function on C =�m
i=1Ci with Ci ⊂ domψi ⊂ IRni , i =

1, . . . ,m, i.e.,

ψ(x) =
m∑

i=1

ψi (xi ), ∀x = (x1, . . . , xm) ∈ C, (34)

then coCψ can be computed explicitly from the coCiψi , i = 1, . . . ,m.

Proposition 12 If for i = 1, . . . ,m, ψi is minorized on Ci by an affine function, then for
every x = (x1, . . . , xm) ∈ K

coCψ(x) ≥
m∑

i=1

coCiψi (xi ) ≥
m∑

i=1

coCiψi (xi ) =
m∑

i=1

(ψi + χCi )
∗∗(xi ) = coCψ(x). (35)

Proof By assumption C ⊂ dom ψ and ψ is minorized by an affine function on C,then, as
mentioned above, coCψ = (ψ + χC )

∗∗ and coCiψi (xi ) = (ψi + χCi )
∗∗(xi ) for i = 1, ..,m

and xi ∈ Ci . The first inequality is trivial because
∑m

i=1coCiψi (xi ) is a convex minoriza-
tion of ψ over C . For the last equalities, it suffices to prove that

∑m
i=1(ψi + χCi )

∗∗(xi ) =
(ψ+χC )

∗∗(x) for every x = (x1, . . . , xm) ∈ C = �m
i=1Ci . We have for y = (y1, . . . , ym) ∈

�m
i=1IRni

(ψ + χC )
∗(y1, . . . , ym) = sup{〈x, y〉 − ψ(x) : x ∈ C}

= sup

{
m∑

i=1

[〈xi , yi 〉 − ψi (xi )] : x = (x1, . . . , xm) ∈ C = �m
i=1Ci

}

=
m∑

i=1

sup{[〈xi , yi 〉 − ψi (xi )] : xi ∈ Ci } =
m∑

i=1

(ψi + χCi )
∗(yi ).

It follows that for x = (x1, . . . , xm) ∈ �m
i=1IRni

(ψ + χC )
∗∗(x) =

m∑
i=1

(ψi + χCi )
∗∗(xi ).

��
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4.1.4 Convex minorization of DC functions over bounded closed convex sets

To build convex minorization for DC functions in global optimization, we are concerned
with DC programs (4) with the explicit constraint C (a nonempty bounded closed convex set
in IRn) and ϕ,ψ ∈ �0(IRn) such that C ⊂ dom ϕ ⊂ dom ψ

α = inf{θ(x) := ϕ(x)− ψ(x) : x ∈ C}. (36)

According to the results displayed in Sects. 4.1.2 and 4.1.3, we propose the following com-
putable convex minorizations of θ on C :

(i) ϕ+ coC (−h) if V (C) is easy to compute, for example in case C is a bounded polyhedral
convex set with known vertex set V (C).

(ii) For the general case, coC (−h) will be replaced with

+ coL(−h) where L is a polytope containing C defined in Sect. 4.1.3, (Li := [ai , bi ]
quite often in practice), if h is separable,
or

+ coS(−h) with S being a simplex containing C .

Of course we must highlight suitable DC decompositions in order to use these convex
minimization as shown just below.

4.1.5 Convex quadratic minimization for the binary quadratic program (BQP)

Let us return to the binary quadratic program (BQP) and indicate how to apply the preceding
results to computing minorizations convex by DC relaxation

α := min

{
f (x) = 1

2
xT Qx + qT x : x ∈ F = S ∩ {0, 1}n

}
, (37)

Computing a lower bound for the optimal value α of (37 ) passes by finding a practical
convex quadratic function on K := {x ∈ IRn : x ∈ S, x ∈ [0, 1]n} which agrees with the
objective function f on F . The problem of minimizing such a convex quadratic function
over K will provide lower bound for α.

According to Sect. 4.1.4, we will work with

L := �m
i=1Li = [0, 1]n, (38)

and build a DC decomposition of f = gμ − hμ on L such that hμ be separable with respect
to Li , i = 1, . . . , n. The following seems to be quite suitable to quadratic functions ([21,22,
24,25,42])

gμ(x) = 1

2
xT (Q − μIn)x + qT x and

hμ(x) = −1

2
μxT x =

m∑
i=1

(
hμ
)

i (xi ) =
m∑

i=1

(
−1

2
μ

)
x2

i , (39)

with μ ≤ min{0, λ1(Q)}. It gives rise to the convex minorization ϕμ of f on L as the sum
of 1

2 xT (Q −μIn)x + qT x and coL(−hμ). From Theorem 11 and Proposition 35, it follows

coLi (−hμ)i (xi ) = 1

2
μxi , ∀i = 1, . . . , n
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and

coL(−hμ)(x) =
m∑

i=1

coLi (−hμ)i (xi ) = 1

2
μ

m∑
i=1

xi = 1

2
μxT e(n),

where e(n) ∈ IRn being the vector of ones. Finally we have

ϕμ(x) := 1

2
xT (Q − μIn)x + qT x + 1

2
μxT e(n) = f (x)+ 1

2
μxT

[
e(n) − x

]
. (40)

This convex quadratic underestimation of f has been used in our DC programming and
DCA for solving nonconvex quadratic programs ([21,22,24,25,42]).

As mentioned in Sect. 3, thanks to the binary structure of the variable x, the concave qua-

dratic function p2(x) =
n∑

i=1
xi (1− xi ) = xT [e(n)− x] can be used as exact penalty function

for (BQP). The fact that p2 is equal to zero on{0, 1}n suggests the next convex quadratic
minorization ψμ of f on F ([21,22,24,25,42])

ψμ(x) := f (x)+ 1

2
μxT

[
e(n) − x

]
= 1

2
xT (Q − μIn)x + qT x + 1

2
μxT e(n), (41)

where μ is chosen such that the matrix Q − μIn be positive semidefinite, i.e., μ ≤ λ1(Q).
The function ψμ agrees with f on {0, 1}n(so a fortiori on F). Hence (37) can be equiva-

lently written as

α := min{ψμ(x) : Ax ≤ b, x ∈ {0, 1}n} (42)

and the optimal value of the convex quadratic program

βμ := min{ψμ(x) : Ax ≤ b, x ∈ [0, 1]n} (43)

is a lower bound for α. It is clear that the greatest lower bound βμ corresponds toμ = λ1(Q) :

βμ ≤ βλ1(Q) : = min

{
ψλ1(Q)(x) :=

1

2
xT (Q − λ1(Q)In)x + qT x

+1

2
λ1(Q)x

T e(n) : Ax ≤ b, x ∈ [0, 1]n
}
, for all μ ≤ λ1(Q). (44)

The lower bound (43) will be used for lower bounding in the combination DCA-B&B-DC
relaxation (Sect. 4.5). As for branching procedure (Sect. 4.3), it will be based on another
equivalent DC program of (BQP) in the continuous framework, (p = p1, p2) :

ν(τ) := min{ψμ(x)+ τp(x) : Ax ≤ b, x ∈ [0, 1]n}. (45)

Indeed, since the convex quadratic function ψμ is a DC function then, according to exact
penalty techniques in DC programming ([29] ), the nonsmooth DC program (45) is equivalent
to (42) in the sense given in Theorem 1: there is τ3 ≥ 0 such that, for every τ > τ3,(42) and
(45) have the same optimal value and the same optimal solution set. On the other hand, since
the concave functions p1, p2 are separable functions on [0, 1]n, it follows from Sect. 4.1.3
that, for p = p1, p2

co[0,1]n p(x) = 0, ∀x ∈ [0, 1]n . (46)

Hence, in virtue of the DC relaxation and Sect. 4.1.3, ψμ is also the convex quadratic under-
estimator, (of the DC objective function of (45)), provided by the procedure (ii) in Sect. 4.1.4,
i.e., ψμ + co[0,1]n p = ψμ.
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Remark 13 (i) The convex quadratic minorization ϕμ defined by DC relaxation for non-
convex quadratic programs (here applied to (37)) coincides with the convex quadratic
underestimation ψμ when λ1(Q) ≤ 0.

(ii) It is worth noting that, in case the quadratic function f is convex, the function ϕλ1(Q)

is greater than f on [0, 1]n and then provides a lower bound greater than that one
given by the objective function f itself:

βλ1(Q) ≥ min{ f (x) : Ax ≤ b, x ∈ [0, 1]n}. (47)

(iii) In [29,32,34] and refrences therein, we investigated the general DC relaxation using
the form Q − Diag(d) with d ∈ IRn such that Q − Diag(d) be positive semidefi-
nite. It leads to solving related SDP problems to construct maximal convex quadratic
underestimations for nonconvex quadratic programs that we will outline in the next
Sect. 4.2.

4.2 SDP relaxation technique for lower bounding in B&B

The second lower bounding relies upon SDP relaxation technique, that seems to be quite
relevant to the structure of Problem (BQP).

We first summarize the standard SDP relaxation techniques for the binary quadratic pro-
gramming ([12,44] and references therein) and recapitulate then related works by Billonnet-
Elloumi [5] , and by Le Thi -Pham Dinh -Nguyen Canh [32,34].

4.2.1 Standard SDP relaxation technique

The standard SDP relaxation techniques are known to provide tighter bounds than quadratic
convex relaxations displayed above but more effort is required to compute them.

The working space then is the vector space Sn(IR) of real symmetric n×n matrices, which
is equipped with the standard dot-product of IRn×n :

A • B := T r(AB) =
n∑

i, j=1

ai j bi j (48)

where A = (ai j ) and B = (bi j ). Throughout the paper, Diag(x) (resp. diag(X)) denotes the
diagonal matrix of order n(resp. the vector in IRn) whose i th entry is xi (resp. xii ) for every
x ∈ IRn(resp. X = (xi j ) ∈ IRn×n .

For X = xxT , we have θ(X) := 1

2
Q • X + Diag(q) • X = f (x). Hence a semidefinite

relaxation can be constructed by replacing xxT with a semidefinite matrix X whose diagonal
elements are in [0, 1]. However, this relaxation turns out to be of poor quality. In order to
arrive at a better relaxation, we observe that

x ∈ {0, 1}n ⇔
{

X = xxT

diag(X) = x
.

Hence

X = diag(X) diag(X)T ⇔ X − diag(X) diag(X)T = 0.

so we will relax the condition X − diag(X) diag(X)T = 0 by

X − diag(X) diag(X)T � 0. (49)
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Finally by Schur Complement [12,44] we have

X̄ :=
[

1 diag(X)T

diag(X) X

]
� 0

The crucial step in the design of a semidefinite relaxation is the representation of the
linear constraint within Sn(IR). However, the existence of its matrix representation depends
on itself ( [12,44] and references therein).

Consider the constraint, aT x ≤ b. The first approach is very natural, we model the con-
straint on the diagonal (because xi = x2

i ): Stabdar

〈Diag(a), X〉 ≤ b (50)

If |aT x | ≤ b we can then square both sides of the original constraint, as a consequence,
we obtain

〈aaT , X〉 ≤ b2 (51)

Another representation appears when we multiply both sides of the constraint by aT x
when aT x ≥ 0.

0 ≤ aT x(b − aT x)⇔
〈(

b
−a

)(
0
a

)T

, X̄

〉
≥ 0 (52)

The last approach may be interpreted as a particular case of a more general technique. In
0-1 programming, Lovasz and Schrijver introduced a system of constraints by multiplying
the original constraints by xi ≥ 0 and 1 − xi ≥ 0 for each xi . It leads to the system of
constraints:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

a j Xi j ≤ bXii

n∑
j=1

a j (X j j − Xi j ) ≤ b(1− Xii )

i = 1, 2, . . . , n (53)

The following result shows the relation between (50), ( 51), (52) and (53).

Lemma 14 ([12]) Let X1,X2,X3 and X4 be the feasible sets defined by (50), (51), (52), and
(53) jointly with

X − diag(X) diag(X)T � 0

respectively. Then X1 ⊇ X2 ⊇ X3 ⊇ X4

Remark 15 (i) Suppose that X∗ is an optimal solution obtained by a SDP relaxation, then
diag(X∗) ∈ [0, 1]n according to (49). For the combination DCA-B&B-SDP described
in Sect. 4.5, diag(X∗)will be used as solution of the relaxed convex quadratic program
for the branching procedure as well as initial point for DCA.

(ii) It is useful to recall that for the unconstrained binary quadratic program (UBQP), the
relaxed (SDP) is uniquely defined and gives quite often tighter bounds than convex
quadratic relaxations but more effort is required to compute them.
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4.2.2 Maximal convex quadratic underestimation in nonconvex quadratic programming

We developed in [32,34] the following convex quadratic minorization of f (x) = 1
2 xT Qx+

qT x on [a, b] := �m
i=1[ai , bi ], where a = (ai ) and b = (bi ) are in IRn such that a < b, i.e.,

ai < bi , for i = 1, . . . , n :

�d(x) := f (x)+ 1

2

n∑
i=1

di (xi − ai )(bi − xi )

= 1

2
xT [Q − Diag(d)]x + qT x + 1

2

n∑
i=1

di [(ai + bi )xi − ai bi ], (54)

with d ∈ IRn such that Q−Diag(d) be positive semidefinite, to compute lower bounds for
the optimal value α of the nonconvex quadratic program

α := min

{
f (x) = 1

2
xT Qx + qT x : x ∈ F = S ∩ [a, b]

}
, (55)

where S ⊂ IRn is a polyhedral convex set. As pointed out in 4.1.3, the box [a, b] will be
used to ease computation of convex quadratic underestimation of f as well as for branching
procedure in B&B scheme. We proved that [32,34]

(a) Every convex quadratic underestimation of f on [a, b] which agrees with f on
�m

i=1{ai , bi } is of the form �d with d ≤ 0.
(b) The maximal �d∗ correspond to the solutions d∗ of the linear multiobjective program

with SDP constraint

max{d : d ≤ 0, Q − Diag(d) � 0}. (56)

Recall that a feasible point d∗ is a solution of (56) if for every feasible point d such that
d∗ ≤ d we have d∗ = d.Problem (56) is equivalent to the usual mathematical program (with
scalar objective function) [31]

0 = min{σ(d) : d ≤ 0, Q − Diag(d) � 0}, (57)

where the scalar objective function σ is defined by

σ(d) := max
{
(δ − d)T e(n) : d ≤ δ, Q − Diag(δ) � 0

}
. (58)

It is clear that σ(d) ≥ 0 for feasible to (56) and the solution sets of (57) and (56) are identical.
Instead of tackling the difficult nonconvex program (57), we solved the SDP program

max

{
n∑

i=1

di : d ≤ 0, Q − Diag(d) � 0

}
, (59)

whose solution set is contained in that of (57). In the particular case where (56) has the
maximum solution d∗, i.e., d∗ ≥ d for all feasible points d of (56), the singleton {d∗} is
exactly the solution set of both problems (56) and (59).

Remark 16 (i) Instead of the box constraint [a, b] = �m
i=1[ai , bi ], if we are concerned

with the combinatorial optimization problem

α := min

{
f (x) = 1

2
xT Qx + qT x : x ∈ F = S ∩�m

i=1{ai , bi }
}
, (60)
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then we will use the strictly concave quadratic function �u which has the same form
as �u in (59):

�u(x) := f (x)+ 1

2

n∑
i=1

ui (xi − ai )(bi − xi )

= 1

2
xT [Q − Diag(u)]x + qT x + 1

2

n∑
i=1

ui [(ai + bi )xi − ai bi ], (61)

except the fact that here the vector u does make the matrix Q−Diag(d) negative
definite. As before we consider then the problem

ηu := min{�u(x) : x ∈ �m
i=1{ai , bi }}, (62)

which is equivalent to the concave quadratic program

ηu := min{�u(x) : x ∈ �m
i=1[ai , bi ]}. (63)

For �u the corresponding �d in (54) takes the form

�d+u(x) := f (x)+ 1

2

n∑
i=1

(di + ui )(xi − ai )(bi − xi )

= 1

2
xT [Q − Diag(d + u)]x + qT x

+1

2

n∑
i=1

(di + ui )[(ai + bi )xi − ai bi ] (64)

with d ≤ 0 and Q−Diag(d + u) � 0.
(ii) A simpler way for constructing such convex quadratic minorizations of f to compute

lower bounds for the optimal value α of (60) is to work directly with the feasible
set F = S ∩ �m

i=1{ai , bi } and use the function �d in (54) with only the condition
Q−Diag(d) � 0. We need not the condition d ≤ 0 in (a) of Sect. (4.2.2). By linear
relaxation of the constraint x ∈ �m

i=1{ai , bi },this convex quadratic underestimation
�d yields the following lower bound for α

β(d) := min
{
�d(x) : x ∈ S ∩�m

i=1[ai , bi ]
}
. (65)

Note that (ii) encompasses (i) because (64) is a special case of �d .

4.2.3 Maximum lower bound via SDP programming

In addition to the use of the well known DC relaxation involving the smallest eigenvalue of
the matrix Q,which is outlined in Sect. 4.1.5, the work by Billonnet-Elloumi in [5] is mainly
devoted to the computation of the maximum lower bound (given by the quadratic function
�d defined in (ii), 16 for ai = 0, bi = 1, i = 1, . . . , n ) for unconstrained binary quadratic
programs (UBQP), a particular case of (BQP) where the feasible set F is simply {0, 1}n :

α := min

{
f (x) = 1

2
xT Qx + qT x : x ∈ {0, 1}n

}
. (UBQP)
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More precisely they considered the following convex quadratic function

�d(x) := f (x)+ 1

2

n∑
i=1

di xi (1− xi )= 1

2
xT [Q − Diag(d)]x + qT x + 1

2

n∑
i=1

di xi (66)

with Q−Diag(d) � 0. It induces the following lower bound for the optimal value α

β(d) := min{�d(x) : x ∈ [0, 1]n}. (67)

Then finding the greatest lower bound amounts to solve the optimization problem with SDP
constraint

β∗ := β(d∗) := max{βd(x) : d ∈ IRn, Q − Diag(d) � 0}. (68)

The search for an equivalent formulation of SDP of a nonconvex program, if it exists, is one
of the most difficult tasks in programming SDP. Fortunately, the problem (68) can be recast
as a SDP problem, according to Poljak-Rendl-Wolkowicz [39] and Lemaréchal-Oustry [33].
More precisely (β∗ = r∗, d∗) is the optimal solution of the SDP problem

β∗ := min r⎡
⎢⎢⎣

−r
1

2

(
q + 1

2
d

)T

1

2

(
q + 1

2
d

)
1

2

[
Q − Diag(d)

]

⎤
⎥⎥⎦ � 0 (SDP)

r ∈ IR, d ∈ IRn

whose dual is exactly the SDP problem given by the standard SDP relaxation above displayed
in Sect. 4.2.1

β∗ := min
1

2
Q • X + Diag(q) • Diag (x)

diag(X) = x[
1 xT

x X

]
� 0 (DSDP)

x ∈ IRn, X ∈ Sn(IR)

Their preprocessing phase consits then of computing (β∗ = r∗, d∗) by applying an exist-
ing SDP code to the dual (DSDP) and solving the convex quadratic program (68) to get its
optimal solution x∗. Finally, as regards the related solution method proposed by Billonnet-
Elloumi [5] to unconstrained binary quadratic programs (UBQP), the preprocessing phase
is followed by the exact solution phase with the MIQP solver of CPLEX 8.1 (ILOG 2002).
In our combined DCA-B&B-SDP for solving (UBQP ), the optimal solution (X∗∗, x∗∗) of
(DSDP) provides lower bounds and initial points x∗∗ for DCA.

4.3 Branching procedure using binary subdivision

Thanks to exact penalty techniques, we obtain equivalent DC programs in the continuous
framework which make possible the application of the local continuous approach DCA. More
precisely, DCA is applied to the first penalty equivalent DC program (24), and the second one
(45), related to the exact penalty function p1(x) =∑n

j=1(p1) j (x j ) =∑n
j=1 min{x j , 1−x j },

is used in the branching procedure of our B&B. We turn the binary character (of the variable
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in the binary quadratic program (BQP)) to advantage in replacing the bisection of a chosen
kth edge [0, 1] with the binary one: xk = 0 and xk = 1. The procedure is detailed in the
following:

Suppose that, at a node in our B&B scheme, we have to solve

min f (x) = 1

2
xT Qx + qT x (SP)

subject to x ∈ S

xi = 0 i ∈ I, xi = 1 i ∈ J

xi ∈ {0, 1} i ∈ {1, 2, . . .} \ (I ∪ J )

Let xRP be an optimal solution of a relaxed problem of (SP) (defined by a relaxation tech-
nique)

If xRP ∈ {0, 1}n , i.e., p1(xRP) = 0, then xRP is also an optimal solution of (SP). Otherwise
there exists j∗ such that x R P

j∗ ∈ (0, 1). Then we replace problem (SP) with two subproblems

by setting xRP
j∗ = 0 and xRP

j∗ = 1, respectively.

The index j∗ is chosen such that the gaps between (p1) j (xRP
j ) = min{xRP

j , 1− xRP
j } and

its convex hull on [0, 1]- which is identical to zero- is maximum with respect to j = 1, . . . n,
i.e.,

max
j
{min{xRP

j , 1− xRP
j }} = min{xRP

j∗ , 1− xRP
j∗ } (69)

Of course, we can also use instead the exact penalty function p2. Note that the criterion
(69) was used in branching procedure, related to normal rectangular subdivisions, of B&B
for continuous nonconvex programming ([41,42]),

4.4 Improving lower bounding by updating the convex quadratic function
ψμ defined by (41)

As specified in Sect. 4.1.5 devoted to DC relaxation using the smallest eigenvalue λ1(Q),
the first lower bounding procedure in our B&B-DC relaxation relies on the lower bound
βλ1(Q) given in (44). In the second one, instead of the same matrix Q, we will work with
the principal submatrices of Q, updated at each branching iteration (binary subdivision), in
order to increase the lower bounds. For that, we explain below how to proceed.

Our B&B begins by solving the convex quadratic program (44). If the optimal solution
x ∈ {0, 1}n , then x is an optimal solution of (BQP) too.

Othewise, choose k ∈ {i = 1, .., n : xi �= 0, 1} by (69) and make a binary subdivision by
setting xk = 0 and xk = 1. We then have to compute two lower bounds for

min

{
f (x) := 1

2
xT Qx + qT x : Ax ≤ b, x ∈ {0, 1}n, xk = 0

}
(P0)

and

min

{
f (x) := 1

2
xT Qx + qT x : Ax ≤ b, x ∈ {0, 1}n, xk = 1

}
(P1).
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From the results displayed in 4.1.5, one can use the following lower bounds ζ0 and ζ1 for
the optimal values of (P0) and (P1), respectively:

ζ0 := min

{
fλ1(Q)(x) :=

1

2
xT (Q − λ1(Q)In)x + qT x

+1

2
λ1(Q)x

T e(n) : Ax ≤ b, x ∈ [0, 1]n, xk = 0

}
, (70)

ζ1 := min

{
fλ1(Q)(x) :=

1

2
xT (Q − λ1(Q)In)x + qT x

+1

2
λ1(Q)x

T e(n) : Ax ≤ b, x ∈ [0, 1]n, xk = 1

}
, (71)

and the procedure is repeated until convergence.
But, to turn the binary character of the variable in (BQP) to advantage, we introduce the

related lower bounds β0 and β1and prove that

β0 ≥ ζ0, β1 ≥ ζ1 (72)

Set K := {1, . . . , n}�{k}. Let AK ,(resp.QK ) be the submatrix of A (resp. Q) of dimen-
sion m × |K | (resp. n × |K |), made up of the columns Ak (resp. Qk), k ∈ K . Likewise, for
J ⊂ {1, . . . , n}, QK

J denotes the submatrix of Q, of dimension |J |×|K |, which is comprised
of the entries qi j with (i, j) ∈ J × K .

By simple matrix computations, we can show that

1

2
xT Qx = 1

2
xT

K QK
K xK + xk QK

k xK + 1

2
x2

k qkk (73)

where xK is the subvector of x, comprised of the components xi , i ∈ K . Then, it follows,
from Sect. 4.1, that the lower bounds β0 and β1 can be given by

β0 := min

{
1

2
xT

K

(
QK

K − λ1

(
QK

K

)
(In)

K
K

)
xK + qT

K xK

+1

2
λ1

(
QK

K

)
xT

K e(n)K : AK xK ≤ b, xK ∈ [0, 1]K
}

(74)

β1 := min

{
1

2
xT

K

(
QK

K − λ1

(
QK

K

)
I K

K

)
xK + 1

2
λ1

(
QK

K

)
xT

K e(n)K + QK
k xK + qT

K xK

+1

2
qkk + qT

K xK : AK xK ≤ b − Ak, xK ∈ [0, 1]K
}
. (75)

To prove (72), we have to express the lower bounds ζ0 and ζ1 in terms of the variable xK .

By using (73), we get

ζ0 = min

{
1

2
xT

K

(
QK

K − λ1 (Q) (In)
K
K

)
xK + qT

K xK

+1

2
λ1 (Q) xT

K e(n)K : AK xK ≤ b, xK ∈ [0, 1]K
}

(76)

and

ζ1 := min

{
1

2
xT

K QK
K xK + QK

k xK + 1

2
qkk + qk + qT

K xK

+1

2
λ1 (Q) xT

K

(
e(n)K − xK

)
: AK xK ≤ b − Ak, xK ∈ [0, 1]K

}
. (77)

123



J Glob Optim (2010) 48:595–632 617

The formulations (74), (75), (76) and (77) allow us to deduce the next result.

Theorem 17 (i) The difference between the objective functions in (74) (resp. (75)) and
(76) (resp. (77)) is

1

2

[
λ1

(
QK

K

)
− λ1(Q)

]
xT

K

[
e(n)K − xK

]
,

which is nonnegative on [0, 1]K .
(ii) The new LB, β0 and β1, for the optimal values of (P0) and (P1), are greater than the

old LB ζ0 and ζ1

β0 ≥ ζ0, β1 ≥ ζ1.

Proof It suffices to prove that λ1(QK
K ) ≥ λ1(Q) by using the well- known variational prop-

erties that eigenvalues of symmetric real matrices enjoy [15], in particular

λ1(Q) = min

{
xT Qx

xT x
: x ∈ IRn�{0}

}
.

Since

min

{
xT Qx

xT x
: x ∈ IRn�{0}

}
≤ min

{
xT Qx

xT x
: x = (xK , xk) ∈ IRK �{0}, xk = 0

}
,

and according to (73), the righ hand side of the above inequality is equal to

min

{
xT

K QK
K xK

xT
K xK

: xK ∈ IRK �{0}
}
,

i.e., λ1
(
QK

K

)
. ��

Remark 18 In the sequel, the B&B scheme using the lower bounds ζ ′s is denoted B&B-old,
while the B&B-new is related to the lower bounds β ′s

4.5 The combined DCA and branch-and-bound algorithm

The purpose of combination of DCA with B&B techniques using convex quadratic underes-
timations (DC relaxation)/SDP relaxation is twofold:

(i) To check globality of solutions computed by DCA, and to find better initial solutions
for restarting DCA if need be.

(ii) To improve upper bounds, with the help of DCA, in B&B and thus accelerate its
convergence.

We are now in a position to describe the combined algorithm for computing a global
optimal solution of problem (BQP).

Algorithm 2 Let R0 := [0, 1]n .
Solve one of the relaxed convex programs of (BQP) generated by the DC relaxation or

SDP relaxation to obtain an optimal solution x R0 and the first lower bound β0 := β(R0).
Apply DCA to the (24) from x R0 to compute an initial point u R0 . Apply DCA to the

equivalent DC program (16) from the starting point u R0 to obtain x R0
τ .
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If x R0
τ is feasible to (BQP), then set upper bound γ := 1

2 (x
R0
τ )

T Qx R0
τ + qT x R0

τ and set

x∗ := x R0
τ .

Otherwise set γ := +∞.
If γ = β0 then x∗ is an optimal solution of (BQP).
else set R← {R0}, k ← 0.
While TRUE do

Select a rectangle Rk such that βk = β(Rk) = min {β(R) : R ∈ R}.
Bisect Rk into two subrectangles Rk0 and Rk1 via the index j∗, chosen as (69), by
branching procedure

Rki = {x ∈ Rk : x j∗ = i} i = 0, 1

Set R← R ∪ {Rki : β(Rki ) < γ, i = 0, 1} \ Rk

Solve the relaxed problem of (Pki ) to obtain β(Rki ) and x Rki :

(Pki ) min

{
1

2
xT Qx + qT x : x ∈ K , x ∈ Rki

}
(i = 0, 1).

If x Rki is feasible to (BQP), and γk := 1

2
(x Rki )T Qx Rki + qT x Rki < γ then

Update upper bound γ = γk and solution x∗ = x Rki

End if
If the condition of restarting DCA (25) is satisfied then

Apply DCA to (16) from x Rki to obtain x
Rki
τ .

If x
Rki
τ is feasible to (BQP), and γk := 1

2
(x

Rki
τ )T Qx

Rki
τ + qT x

Rki
τ < γ then

Update upper bound γ = γk and solution x∗ = x
Rki
τ

End if
End if
Update the list of rectangles R← R \ {R j : β(R j ) > γ }
If (R = ∅) or (γ = min {β(R) : R ∈ R}) then

STOP, x∗ is an optimal solution
else k ← k + 1.

End while

The correctness and the convergence of the algorithm are stated in the following result
whose proof is fairly standard from the branching procedure and the bounding one [41,42].
Its finiteness is due to the binary subdivision used in the algorithm.

Proposition 19 Algorithm2 terminates after finitely many iterations and yielding an optimal
solution of Problem (BQP).

5 Computational results

This section presents the computational results provided by our algorithms on several sets
of test problems. The algorithm has been coded in a C program using CPLEX 7.5 as LP
and Convex Quadratic solver [18] and the callable library function SDPA6.0 for solving
SDP problem [7]. All computational results have been obtained by implementing our pro-
gram under Window XP on a 2GH PC portable. We use the efficient library code in C++
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(http://www.robertnz.net/VisualC.html) for computing smallest and largest eigenvalues of
symmetric matrices under consideration. We specify the following options in our codes:

(i) DCA is applied to the penalty equivalent DC program (16).
(ii) Lower bounding via DC relaxation uses the lower bound βλ1(Q) given in (44). The

resulting global algorithm is denoted DCA-B&B-old (Remark 18).
(iii) The global algorithm DCA-B&B-new corresponds to updated lower bounds at each

iteration (binary subdivision) of B&B, according to 41 (Remark 18).
(iv) Standard SDP relaxation for lower bounds in the global algorithm DCA-B&B-SDP is

described in 4.2.1. Here the SDP relaxation (52) is used because it gives best lower
bounds within identical execution times.

The test problems are under the form of maximization that we transform into minimiza-
tion before applying our algorithms. Numerical results are reconverted for the former ones:
upper bounds (for maximization) are the opposites of lower bounds (for minimization) and
vice versa. The following notations are used:

• #Iter : Number of iterations in the combined DCA-B&B
• LB/Val : Objective value at the solution computed by DCA
• UB : Upper bound obtained by the corresponding relaxation or Opt (optimal value known)
• #DCA: Number of restarting DCA
• ε : The relative error (UB-LB)/(|LB| + 1)

1) The first test problem is the unconstrained binary quadratic program (UBQP). The first
instances are the Beasley instances. These data sets are due to [4]. The second instances
are due to [8]. All data set can be obtained from the OR-Library [3] as well as from [43].
Note that the problems are given as maximization problems.

Finding an exact optimal solution is somehow impossible for large dimension problems.
In fact, we always try to find out an ε-optimal solution (the value of ε is often equal to
0.05 and sometimes equal to 0.03, depending on the goal of the problem). Algorithms pro-
posed in [4,8] are the heuristics ones. As pointed out in the introduction and Sect. 4.2.3, the
work on (UBQP) in Billonnet-Elloumi [5] deals with maximum lower bound via SDP(SDP),
which is nothing but the lower bound computed by the standard SDP relaxation (DSDP) in
Poljak-Rendl-Wolkowicz [39]. Not surprisingly that, by using this lower bound and x∗ or
x∗∗(defined in Sect. 4.2.3) in our DCA-B&B-SDP, we obtained similar computational results.
We reported three types of combination, the DCA-B&B-old (μ fixed), the DCA-B&B-new
(μ recalculated at each step of binary subdivision), (see Remark 18), and the DCA-B&B-
SDP. The quality of our computed solutions can be seen by the results given in [43]. In all
cases, we limit the number of iterations to 1,00,000.

It is also interesting to estimate the quality of solutions given by DCA with respect to the
optimal values. DCA can work with a problem in any dimension and, in practice, gives a
very good solution. It means that the computed solutions are often ε-optimal solutions (even
exact optimal ones in many cases). We use the sign ∗∗ to denote the instances in which exact
optimal solutions are found. The sign ∗ denotes the ones in which, with DCA, we obtain
an ε-optimal solution such that ε ≤ 0.01 at the first launching time. This is a very impor-
tant remark. Indeed, when handling large scale real-life problems where computing an exact
global solution is somehow impossible, finding such a solution is always a challenge. While,
for almost current solvers, the dimensions of these problems have exceeded their limitation.

123

http://www.robertnz.net/VisualC.html


620 J Glob Optim (2010) 48:595–632

We presented the computational results for data in [4] in Tables 1 and 2 where in the former
the number of variable (n) is equal to 50 and in the latter it is equal to 100. The density d of
matrix Q is equal to 0.1 in all the instances.

Table 1 [4] Data, n = 50, d = 0.1. Numerical results

Prob Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B old

bqp50-1 2,098 – 3133.88 2,064 1 69,777 1534.94 2,064 1

bqp50-2 3,702 9,628 178.94 ∗∗3,702 4 3,708 56.20 ∗∗3,702 4

bqp50-3 4,626 1,048 18.59 ∗∗4,626 1 344 4.71 ∗∗4,626 1

bqp50-4 3,544 54,041 1332.39 ∗∗3,544 3 41,372 737.53 3,400 2

bqp50-5 4,012 45,076 1090.86 ∗∗4,012 2 18,896 314.39 3,888 1

bqp50-6 3,693 7,376 127.27 ∗∗3,693 2 3,232 39.42 ∗∗3,693 2

bqp50-7 4,520 4,819 84.03 ∗4,510 1 1,552 20.44 ∗4,510 1

bqp50-8 4,216 8,144 153.50 4,112 1 2,586 33.73 4,112 1

bqp50-9 3,780 49,523 1214.29 3,732 1 20,891 318.77 3,732 1

bqp50-10 3,507 80,150 2298.33 3,467 1 28,799 459.97 3,467 1

DCA - B&B new

bqp50-1 2,098 51,752 1231.24 2,064 1 27,491 428.50 2,064 1

bqp50-2 3,702 6,656 124.97 ∗∗3,702 4 2,692 41.63 ∗∗3,702 4

bqp50-3 4,626 817 15.16 ∗∗4,626 1 287 4.42 ∗∗4,626 1

bqp50-4 3,544 22,271 444.09 ∗∗3,544 3 19,810 294.00 3,400 2

bqp50-5 4,012 13,881 256.97 ∗∗4,012 2 5,320 78.72 3,888 1

bqp50-6 3,693 5,908 107.23 ∗∗3,693 2 2,658 35.23 ∗∗3,693 2

bqp50-7 4,520 1,313 23.83 ∗4,510 1 423 6.20 ∗∗4,510 1

bqp50-8 4,216 2,972 54.56 4,112 1 992 13.95 4,112 1

bqp50-9 3,780 14,583 263.33 3,732 1 6,344 86.00 3,732 1

bqp50-10 3,507 44,657 1038.28 3,467 1 17,100 247.9 3,467 1

Prob Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B - SDP

bqp50-1 2,098 224 44.13 2,040 1 91 19.36 2,040 1

bqp50-2 3,702 1 0.23 ∗∗3,702 1 1 0.23 ∗∗3,702 1

bqp50-3 4,626 1 0.17 ∗∗4,626 1 1 0.17 ∗∗4,626 1

bqp50-4 3,544 23 5.58 ∗∗3,544 3 8 2.02 3,406 1

bqp50-5 4,012 2 0.50 ∗3,992 1 1 0.20 ∗3,992 1

bqp50-6 3,693 1 0.19 ∗∗3,693 1 1 0.19 ∗∗3,693 1

bqp50-7 4,520 4 1.03 4,470 1 1 0.19 4,470 1

bqp50-8 4,216 4 1.06 ∗4,192 1 1 0.19 ∗4,192 1

bqp50-9 3,780 55 11.97 3,696 1 10 2.48 3,696 1

bqp50-10 3,507 164 33.06 3,427 1 18 4.17 3,427 1

– : Stop after 1,00,000 iterations.
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Table 2 [4] Data, n = 100, d = 0.1. Numerical results

Prob Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B old

bqp100-1 7,970 – 5139.69 7,664 1 – 5139.69 7,664 1

bqp100-2 11,036 – 5202.88 10,878 1 – 5202.88 10,878 1

bqp100-3 12,723 – 5363.94 ∗12,661 1 – 5363.94 ∗12,661 1

bqp100-4 10,368 – 5300.30 ∗10,320 1 – 5300.30 ∗10,320 1

bqp100-5 9,083 – 5161.06 8,813 1 – 5161.06 8,813 1

bqp100-6 10,210 – 5243.00 9,976 1 – 5243.00 9,976 1

bqp100-7 10,125 – 5094.41 9,914 1 – 5094.41 9,914 1

bqp100-8 11,435 – 5288.42 ∗11,363 1 – 5288.42 ∗11,363 1

bqp100-9 11,455 – 5640.03 ∗11,383 1 51,884 2381.03 ∗11,383 1

bqp100-10 12,565 – 5265.88 12,403 1 – 5265.88 12,403 1

DCA - B&B new

bqp100-1 7,970 – 5816.73 7,664 1 – 5816.73 7,664 1

bqp100-2 11,036 – 5847.94 10,878 1 – 5847.94 10,878 1

bqp100-3 12,723 – 5872.25 ∗12,661 1 – 5872.25 ∗12,661 1

bqp100-4 10,368 – 5923.97 ∗10,320 1 – 5923.97 ∗10,320 1

bqp100-5 9,083 – 5890.36 8,813 1 – 5890.36 8,813 1

bqp100-6 10,210 – 5942.47 9,976 1 – 5942.47 9,976 1

bqp100-7 10,125 – 5829.58 9,914 1 – 5829.58 9,914 1

bqp100-8 11,435 – 5932.19 ∗11,363 1 – 5932.19 ∗11,363 1

bqp100-9 11,455 – 6357.38 ∗11,383 1 18,724 919.53 ∗11,383 1

bqp100-10 12,565 – 6310.83 12,403 2 53,602 2809.58 12,403 1

DCA - B&B - SDP

bqp100-1 7,970 2,556 3706.17 7,788 1 299 434.70 7,788 1

bqp100-2 11,036 445 708.22 10,952 1 23 34.97 10,952 1

bqp100-3 12,723 13 23.30 ∗12,705 1 1 1.03 ∗12,705 1

bqp100-4 10,368 38 65.59 ∗10,320 1 3 4.63 ∗10,320 1

bqp100-5 9,083 831 1284.94 8871 1 82 126.69 8,871 1

bqp100-6 10,210 1,047 1592.11 ∗10,127 1 79 120.05 ∗10,127 1

bqp100-7 10,125 9,673 13254.81 9,884 1 534 755.20 9,884 1

bqp100-8 11,435 88 150.05 ∗11,363 1 4 5.98 ∗11,363 1

bqp100-9 11,455 42 73.42 11,249 1 3 4.38 11,249 1

bqp100-10 12,565 83 141.53 12,433 1 4 6.00 12,433 1

– : Stop after 1,00,000 iterations.

Numerical experiences for data in [8] and [5] are shown in Tables 3 and 4, respectively.
For both series test problems we first once again tried to get an ε-solution with ε ≤ 0.05 and
after that we decreased ε to 0.03.

2) The second test problem is the Maximum Clique Problem (MCP). One of the most
important problems in combinatorial optimization. It can be modeled as a unconstrained
binary quadratic program [17]. Computational results with three combinations on
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Table 3 DCA in B&B method with different relaxation techniques, data [8]

Prob n d Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B - old

gka1a 50 0.1 3,414 – 3202.88 3,353 1 – 3202.88 3,353 1

gka2a 60 0.1 6,063 1,634 35.38 ∗∗6,063 1 395 8.69 ∗∗6,063 1

gka3a 70 0.1 6,037 – 3930.50 ∗5,859 1 – 3930.50 ∗5,859 1

gka4a 80 0.1 8,598 – 4428.31 ∗8,554 1 20,851 691.33 ∗8,554 1

gka5a 50 0.2 5,737 28,703 706.89 5,584 1 10,568 231.80 5,584 1

gka6a 30 0.4 3,980 55 0.92 ∗3,973 1 24 0.45 ∗3,973 1

gka7a 30 0.5 4,541 113 1.88 ∗∗4,541 1 60 1.03 ∗∗4,541 1

gka8a 100 0.0625 11,109 – 4996.34 ∗11,051 1 – 4946.34 ∗11,051 1

gka1b 20 1.0 133 185 2.66 ∗∗133 4 185 2.66 ∗∗133 4

gka2b 30 1.0 121 1,167 21.52 ∗∗121 2 1,167 21.52 ∗∗121 2

gka3b 40 1.0 118 4,997 129.38 ∗∗118 2 4,997 129.38 ∗∗118 1

gka4b 50 1.0 129 12,374 422.77 ∗∗129 2 12,374 414.87 ∗∗129 2

gka5b 60 1.0 150 414.87 1902.11 ∗∗150 2 4,1487 1902.11 ∗∗150 2

gka1c 40 0.8 5,058 15 0.42 ∗∗5,058 1 4 0.16 ∗∗5,058 1

gka2c 50 0.6 6,213 261 7.73 ∗6,151 1 60 1.91 ∗6,151 1

gka3c 60 0.4 6,665 564 17.73 ∗6,648 1 116 3.83 ∗6,648 1

DCA - B&B - new

gka1a 50 0.1 3,414 – 3227.34 3,353 1 58,318 1534.06 3,353 1

gka2a 60 0.1 6,063 1,215 28.09 ∗∗6,063 1 316 7.73 ∗∗6,063 1

gka3a 70 0.1 6,037 – 4202.94 ∗5,859 1 – 4202.94 ∗5,859 1

gka4a 80 0.1 8,598 3,130 1142.09 ∗8,554 1 6,035 207.72 ∗8,554 1

gka5a 50 0.2 5,737 15,555 335.08 5,584 1 5,846 119.53 5,584 1

gka6a 30 0.4 3,980 31 0.59 ∗3,973 1 17 0.36 ∗3,973 1

gka7a 30 0.5 4,541 54 0.92 ∗∗4,541 1 31 0.56 ∗∗4,541 1

gka8a 100 0.0625 11,109 – 5958.44 ∗11,051 1 – 5, 958.44 ∗11,051 1

gka1b 20 1.0 133 84 1.08 ∗∗133 2 83 1.08 ∗∗133 2

gka2b 30 1.0 121 488 7.45 ∗∗121 4 488 7.45 ∗∗121 4

gka3b 40 1.0 118 1,349 25.94 ∗∗118 2 1,349 25.94 ∗∗118 2

gka4b 50 1.0 129 3,781 91.39 ∗∗129 3 3,781 89.77 ∗∗129 3

gka5b 60 1.0 150 8,836 279.92 ∗∗150 2 8,836 275.78 ∗∗150 2

gka1c 40 0.8 5,058 12 0.34 ∗∗5,058 1 4 0.16 ∗∗5,058 1

gka2c 50 0.6 6,213 171 4.89 ∗6,151 1 38 1.27 ∗6,151 1

gka3c 60 0.4 6,665 380 12.05 ∗6,648 1 86 3.02 ∗6,648 1

DCA - B&B - SDP

gka1a 50 0.1 3,414 17 4.25 ∗3,380 1 3 0.83 ∗3,380 1

gka2a 60 0.1 6,063 1 0.36 ∗∗6,063 1 1 0.36 ∗∗6,063 1

gka3a 70 0.1 6,037 216 116.27 ∗5,992 1 26 16.06 ∗5,992 1

gka4a 80 0.1 8,598 5 4.61 ∗8,543 1 1 0.70 ∗8,543 1

gka5a 50 0.2 5,737 52 11.80 ∗5,730 2 8 2.13 ∗5,730 1
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Table 3 Continued

Prob n d Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B - SDP

gka6a 30 0.4 3,980 4 0.36 ∗3,973 1 2 0.23 ∗3,973 1

gka7a 30 0.5 4,541 2 0.22 ∗∗4,541 1 1 0.11 ∗∗4,541 1

gka8a 100 0.0625 11,109 1 1.16 ∗11,051 1 1 1.16 ∗11,051 1

gka1b 20 1.0 133 37 1.80 ∗∗133 3 37 1.80 ∗∗133 3

gka2b 30 1.0 121 231 14.11 ∗∗121 4 231 14.14 ∗∗121 4

gka3b 40 1.0 118 514 48.66 ∗∗118 3 514 48.66 ∗∗118 3

gka4b 50 1.0 129 1,113 175.50 ∗∗129 4 1,113 175.50 ∗∗129 4

gka5b 60 1.0 150 2,035 547.88 ∗∗150 3 2,035 547.88 ∗∗150 3

gka1c 40 0.8 5,058 1 0.14 ∗∗5,058 1 1 0.14 ∗∗5,058 1

gka2c 50 0.6 6,213 2 0.56 ∗6,151 1 1 0.27 ∗6,151 1

gka3c 60 0.4 6,665 1 0.36 ∗6,648 1 1 0.36 ∗6,648 1

– : Stop after 1,00,000 iterations.

Table 4 DCA in B&B method with different relaxation techniques, data [8]

Prob n d Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B - old

be100.1 100 1 19,412 – 11954.31 ∗19,299 1 86,583 11696.88 ∗19,299 1

be100.2 100 1 17,290 – 12020.16 17,076 1 31,492 4945.48 17,076 1

be100.3 100 1 17,565 – 12147.87 17,348 1 54,495 9912.92 17,348 1

be100.4 100 1 19,125 – 11632.45 ∗19,036 1 24,586 8394.08 ∗19,036 1

be100.5 100 1 15,868 – 13298.67 15,538 1 – 13298.67 15,538 1

be100.6 100 1 17,368 – 12949.38 16,958 1 – 12949.38 16,958 1

be100.7 100 1 18,629 – 12309.89 18,308 1 – 12309.89 18,308 1

be100.8 100 1 18,649 – 12296.95 18,081 1 – 12296.95 18,081 1

be100.9 100 1 13,294 – 12462.45 12,651 1 – 12462.45 12,651 1

be100.10 100 1 15,352 – 12317.91 14,690 1 – 12317.91 14,690 1

DCA - B&B - new

be100.1 100 1 19,412 – 11874.24 ∗19,299 1 48,671 9128.31 ∗19,299 1

be100.2 100 1 17,290 – 11560.56 17,076 1 14,574 2663.78 17,076 1

be100.3 100 1 17,565 88,412 11495.56 17,348 1 11,717 2183.02 17,348 1

be100.4 100 1 19,125 – 11980.28 ∗19,036 1 11,487 2178.56 ∗19,036 1

be100.5 100 1 15,868 – 11940.14 15,538 1 – 11940.14 15,538 1

be100.6 100 1 17,368 – 11830.09 16,958 1 – 11830.09 16,958 1

be100.7 100 1 18,629 – 11306.61 18,038 1 – 11306.61 18,038 1

be100.8 100 1 18,649 – 11247.66 18,081 1 – 11247.66 18,081 1

be100.9 100 1 13,294 – 11341.42 12,651 1 – 11341.42 12,651 1

be100.10 100 1 15,352 – 11921.03 14,690 1 – 11921.03 14,690 1
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Table 4 Continued

Prob n d Opt ε ≤ 0.03 ε ≤ 0.05

#Iter t(s) Val #DCA #Iter t(s) Val #DCA

DCA - B&B - SDP

be100.1 100 1 19,412 48 122.22 ∗19,338 1 2 4.64 ∗19,338 1

be100.2 100 1 17,290 226 538.59 ∗17,161 1 15 39.67 ∗17,161 1

be100.3 100 1 17,565 424 980.34 17,312 1 26 68.13 17,312 1

be100.4 100 1 19,125 96 238.16 ∗19,007 1 4 10.48 ∗19,007 1

be100.5 100 1 15,868 1,639 3559.95 15,674 1 162 392.08 15,674 1

be100.6 100 1 17,368 460 1060.22 17,144 1 35 90.24 17,144 1

be100.7 100 1 18,629 1,754 3711.80 18,348 1 135 322.55 18,348 1

be100.8 100 1 18,649 49,233 71798.14 ∗∗18,649 2 8,589 16844.78 17,983 1

be100.9 100 1 13,294 13,085 21208.31 13,095 2 7,285 14389.28 12,719 1

be100.10 100 1 15,352 15,196 26897.54 ∗∗15,352 2 4,687 9896.78 14,759 1

– : Stop after 1,00,000 iterations.

various sizes (n ≤ 200) of problems are provided in Table 5. We found exact opti-
mal solutions for this type of problem.

3) The last test problem is the 0-1 Quadratic Knapsack problem (QK01). In this case, there
is only one linear constraint, see [12].

We tested 40 instances provided by OR-Library [3] with dimension 100. The different den-
sities of matrix Q are 25, 50, 75 and 100%. We will denote the various instances as 100.D.O
where D is the density expressed as percentage and O is the order. The penalty parameter τ
in our numerical simulations takes the value 105. The notation “1st DCA” denotes the values
given by DCA at the first iteration where a binary solution is found. Our algorithms stop
either an ε-optimal solution, (ε ≤ 0.05), is found or after 1,00,000 iterations.

We reported the computational experiments in Tables 6 and 7 with the same notations as
in the unconstrained binary quadratic program.

From the results we can observe the efficiency of DCA and the combined DCA-B&B
(“old” and “new”). In all cases, DCA gives a very good binary solution, most of them are
ε-optimal solutions of (BQP) (with ε ≤ 1% or even exact optimal one) since the number

Table 5 Numerical results of maximum clique problem

Prob Nodes Edges Clique size #Iter UB LB #DCA Time(s)

B&B - DCA - old

johnson8-2-4 28 210 4 4 4 4 2 0.06

MANN_a9 45 918 16 – 17 16 2 2380.30

hamming6-2 64 1,824 32 – 34 32 1 3023.56

hamming6-4 64 704 4 1,912 4 4 1 70.45

johnson8-4-4 70 1,855 14 37,807 14 14 4 1099.88

c-fat200-1 200 1,534 12 38,332 12 12 1 11248.30
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Table 5 Continued

Prob Nodes Edges Clique size #Iter UB LB #DCA Time(s)

DCA - B&B new

johnson8-2-4 28 210 4 4 4 4 2 0.05

MANN_a9 45 918 16 38,623 16 16 2 504.42

hamming6-2 64 1,824 32 1,9174 32 32 1 240.88

hamming6-4 64 704 4 148 4 4 1 1.81

johnson8-4-4 70 1,855 14 4,565 14 14 1 49.69

c-fat200-1 200 1,534 12 1,589 12 12 1 35.09

B&B - DCA - SDP

johnson8-2-4 28 210 4 4 4 4 2 0.18

MANN_a9 45 918 16 1,588 16 16 3 143.77

hamming6-2 64 1,824 32 8,372 32 32 1 1076.64

hamming6-4 64 704 4 59 4 4 2 7.84

johnson8-4-4 70 1,855 14 1,430 14 14 2 149.61

c-fat200-1 200 1,534 12 205 12 12 1 644.09

– : Stop after 1,00,000 iterations.

Table 6 Numerical results of 0-1 Quadratic knapsack problem—part 1

Prob #Iter UB LB ε #DCA 1st DCA Time (s)

DCA - B&B old

100.25.1 – 21,521 12,560 0.42 1 12,560 12147.48

100.25.2 79 58,148 55,412 0.05 156 55,412 36.22

100.25.3 – 5,565 872 0.84 1 872 12565.06

100.25.4 – 52,423 48,535 0.07 1 48,535 12155.25

100.25.5 5 62,727 59,639 0.05 1 63,062 0.63

100.25.6 – 38,610 35,360 0.08 1 35,360 12061.77

100.25.7 – 16,714 10,256 0.39 1 10,256 12247.25

100.25.8 – 22,615 15,852 0.30 1 15,852 11969.79

100.25.9 – 37,835 34,916 0.08 1 34,916 12071.30

100.25.10 – 27,945 23,145 0.17 1 23,145 12062.84

DCA - B&B new

100.25.1 – 20,553 12,560 0.39 1 12,560 8740.16

100.25.2 71 58,056 55,412 0.05 140 55,412 31.67

100.25.3 – 4,993 872 0.83 1 872 8899.31

100.25.4 – 51,903 48,535 0.07 1 48,535 8825.56

100.25.5 5 62,717 59,639 0.05 1 63,062 0.59

100.25.6 – 37,747 35,360 0.06 1 35,360 8587.64

100.25.7 – 15,882 10,256 0.35 1 10,256 8781.89

100.25.8 – 21,709 15,852 0.27 1 15,852 8638.11

100.25.9 – 36,967 34,916 0.06 1 34,916 8514.67

100.25.10 – 26,772 23,145 0.14 1 23,145 8525.84
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Table 6 Continued

Prob #Iter UB LB ε #DCA 1st DCA Time (s)

DCA - B&B - SDP

100.25.1 967 18,559 18,558 0.00 2 17,028 3364.77

100.25.2 3 56,576 56,320 0.01 3 56,320 9.08

100.25.3 256 3,752 3,752 0.00 2 3,020 1025.20

100.25.4 1 50,526 48,088 0.05 1 48,088 2.88

100.25.5 8 61,579 61,494 0.00 14 61,494 41.66

100.25.6 4 36,484 35,744 0.00 6 35,744 18.03
100.25.7 1 14,848 14,282 0.04 1 14,282 2.45

100.25.8 122 20,452 20,452 0.00 2 19,069 481.80

100.25.9 1 35,600 34,924 0.02 1 34,924 2.61

100.25.10 1 25,216 24,748 0.02 1 24,748 3.05

DCA - B&B old

100.50.1 – 87,189 80,843 0.07 1 80,843 14329.17

100.50.2 20,845 1,07,931 1,02,535 0.05 1 1,02,535 2709.97

100.50.3 – 39,189 25,636 0.35 1 25,636 14270.22

100.50.4 721 1,08,979 1,03,532 0.05 1 1,03,532 92.88

100.50.5 – 61,322 53,165 0.13 1 53,165 14436.91

100.50.6 – 21,834 5,679 0.74 1 5,679 15348.38

100.50.7 – 58,127 44,763 0.23 1 44,763 13887.09

100.50.8 – 59,025 49,130 0.17 1 49,130 14303.06

100.50.9 – 74,434 67,930 0.09 1 67,930 14246.74

100.50.10 – 92,900 87,748 0.06 1 87,748 14118.11

DCA - B&B new

100.50.1 – 85,567 80,843 0.06 1 80,843 11074.86

100.50.2 3,661 1,07,931 1,02,535 0.05 1 1,02,535 391.77

100.50.3 – 37,003 25,636 0.31 1 25,636 10842.88

100.50.4 278 1,08,980 1,03,532 0.05 1 1,03,532 32.05

100.50.5 – 59,189 53,165 0.10 1 53,165 11035.95

100.50.6 – 19,939 5,679 0.72 1 5,679 11722.67

100.50.7 – 55,871 44,763 0.22 1 44,763 11092.20

100.50.8 – 56,910 49,130 0.14 1 49,130 10951.94

100.50.9 – 72,259 67,930 0.06 1 67,930 10927.86

100.50.10 19,911 92,366 87,748 0.05 1 87,748 2025.42

DCA- B&B - SDP

100.50.1 1 83,976 82,737 0.02 1 82,737 2.97

100.50.2 1 1,05,088 1,04,389 0.01 1 1,04,389 3.31

100.50.3 1 34,268 33,095 0.04 1 33,095 2.84

100.50.4 1 1,06,097 1,05,876 0.00 1 1,05,876 3.19

100.50.5 2 56,701 56,297 0.01 3 56,297 8.72

100.50.6 1 16,270 16,021 0.02 1 16,021 3.30

100.50.7 1 52,979 52,646 0.01 1 52,646 2.91

100.50.8 1 54,506 53,790 0.01 1 53,790 2.93
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Table 6 Continued

Prob #Iter UB LB ε #DCA 1st DCA Time (s)

100.50.9 1 69,035 68,974 0.00 1 68,974 2.86

100.50.10 2 89,011 88,045 0.01 2 88,045 8.44

– : Stop after 1,00,000 iterations.

Table 7 Numerical results of 0-1 Quadratic knapsack problem—part 2

Prob #Iter UB LB ε #DCA 1st DCA Time (s)

DCA - B&B old

100.75.1 1 1,90,435 1,88,190 0.01 1 1,88,190 0.25

100.75.2 – 1,05,802 80,815 0.24 1 80,815 16103.58

100.75.3 – 70,794 51,086 0.28 1 51,086 16405.92

100.75.4 – 8,19,570 47,771 0.42 1 47,771 15823.16

100.75.5 – 3,60,954 14,150 0.61 1 14,150 16691.56

100.75.6 1,004 1,51,813 1,44,227 0.05 1 1,44,227 147.94

100.75.7 – 1,20,412 1,09,814 0.09 1 1,09,814 16046.69

100.75.8 – 28,604 5,613 0.80 1 5,613 16697.94

100.75.9 – 1,13,465 1,00,040 0.12 1 1,00,040 16095.06

100.75.10 16,178 1,48,956 1,41,509 0.05 1 1,41,509 2392.69

DCA - B&B new

100.75.1 1 1,90,435 1,88,190 0.01 1 1,88,190 0.25

100.75.2 – 1,02,318 80,815 0.21 1 80,815 13273.38

100.75.3 – 67,119 51,086 0.24 1 51,086 13332.73

100.75.4 – 78,513 47,771 0.39 1 47,771 12628.19

100.75.5 – 3,33,264 14,150 0.58 1 14,150 13475.13

100.75.6 268 1,51,797 1,44,227 0.05 1 1,44,227 37.94

100.75.7 – 1,17,181 1,09,814 0.06 1 1,09,814 13317.66

100.75.8 – 25,875 5,613 0.78 1 5,613 13457.06

100.75.9 – 1,10,114 1,00,040 0.09 1 1,00,040 13365.81

100.75.10 2,497 1,48,956 1,41,509 0.05 1 1,41,509 314.84

DCA - B&B - SDP

100.75.1 2 1,89,137 1,89,137 0.00 1 1,89,137 3.14

100.75.2 1 95,515 93,658 0.02 1 93,658 2.89

100.75.3 1 62,285 62,046 0.00 1 62,046 3.41

100.75.4 1 72,777 71,226 0.02 1 71,226 3.16

100.75.5 1 27,903 27,233 0.03 1 27,233 3.14

100.75.6 1 1,45,448 1,44,227 0.01 1 1,44,227 2.83

100.75.7 1 1,11,357 1,09,625 0.01 1 1,09,625 3.17

100.75.8 34 19,573 19,525 0.00 2 18,345 154.42

100.75.9 1 1,04,901 1,02,663 0.02 1 1,02,663 3.09

100.75.10 2 1,43,956 1,42,617 0.01 3 1,42,617 8.61
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Table 7 Continued

Prob #Iter UB LB ε #DCA 1st DCA Time (s)

DCA - B&B old

100.100.1 – 89,718 68,522 0.24 1 68,522 18018.20

100.100.2 86,245 1,98,210 1,88,300 0.05 1 18,830 15128.28

100.100.3 1 2,35,006 2,23,990 0.05 1 2,23,990 0.27

100.100.4 – 81,957 47,771 0.42 1 47,771 16237.17

100.100.5 1 2,39,653 2,28,311 0.05 1 2,28,311 0.27

100.100.6 – 85,705 63,502 0.35 1 63,502 17481.24

100.100.7 – 86,306 56,152 0.35 1 56,152 17952.64

100.100.8 – 72,879 46,249 0.58 1 46,249 17450.33

100.100.9 18 2,39,550 2,31,191 0.04 34 2,31,191 26.05

100.100.10 4,372 2,01,660 1,91,578 0.05 68 1,91,578 733.67

DCA - B&B new

100.100.1 – 86,149 68,522 0.21 1 68,522 14431.92

100.100.2 6,956 1,98,210 1,88,300 0.05 1 18,830 1050.69

100.100.3 1 2,35,006 2,23,990 0.05 1 2,23,990 0.27

100.100.4 – 78,513 47,771 0.39 1 47,771 13328.52

100.100.5 1 2,39,653 2,28,311 0.05 1 2,28,311 0.27

100.100.6 – 80,870 63,502 0.22 1 63,502 14539.05

100.100.7 – 81,632 56,152 0.31 1 56,152 15605.75

100.100.8 – 68,355 46,249 0.32 1 46,249 14697.13

100.100.9 27 2,38,707 2,31,191 0.03 52 2,31,191 38.28

100.100.10 844 2,01,660 1,91,578 0.05 147 1,91,578 191.52

DCA - B&B - SDP

100.100.1 1 82,625 81,760 0.01 1 81,760 3.29

100.100.2 1 1,90,901 1,88,993 0.01 1 1,88,993 3.28

100.100.3 1 2,25,560 2,20,471 0.02 1 2,20,471 3.39

100.100.4 1 72,777 71,226 0.02 1 71,226 5.08

100.100.5 7 2,30,235 2,30,076 0.00 13 2,30,076 40.75

100.100.6 1 74,715 74,074 0.01 1 74,074 3.14

100.100.7 1 75,215 74,341 0.01 1 74,341 3.30

100.100.8 1 62,874 62,251 0.01 1 62,251 2.98

100.100.9 25 2,34,112 2,32,200 0.01 47 2,32,200 162.73

100.100.10 12 1,94,953 1,92,300 0.01 22 1,92,300 62.30

– : Stop after 1,00,000 iterations.

“#DCA” of restarting DCA is surprisingly small and equal to 1 in most cases. The efficiency
of DCA can be clearly seen when we decrease the ε in the stopping criterion. We can see
that our global algorithm could not stop since the lower bound (resp. upper bound for max-
imization problem) could not sufficiently approach the upper bound (resp. lower bound for
maximization problem) given by DCA.

Due to SDP relaxation, the confirmation of the optimality of the solution given by DCA
is quite faster than other relaxations. As for the combination DCA-B&B (“old” and “new”)
without SDP relaxation, their lower bounds increase too slowly to reach the relative error
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5% before 1,00,000 iterations. So for many test problems (where the number of iterations
is denoted by “–” in the tables) they failed to provide ε-optimal solutions. It is worthwhile
remarking that within these two combinations (without using SDP relaxation) DCA always
gives ε-optimal solutions after only one restarting, but neither DCA-B&B-old nor DCA-
B&B-new are able to confirm this fact in the cases “–”. We must have recourse to the
combination DCA-B&B-SDP for it. By recalculating μ′s values during binary subdivisions,
the combination DCA-B&B -new improved the efficiency of the algorithm and arrived at
some solutions while the “old” failed. The increase of μ′s is important: in many cases, the
maximum difference between μ′s is near 1,000.

Comparison with existing algorithms
As we have clearly specified in the introduction, our main objective is to prove that our

local approach based on DC programming and DCA with good initial points is inexpensive
and efficient, and can thus be applicable to large-scale (BQP). Indeed these problems (BQP)
are NP-hard and no existing algorithms can be able to globally solve them in the large-scale
setting. Its combination with B&B aims at

(i) Computing good initial points for DCA, and restarting the algorithm if a feasible (binary
or not) solution of the penalized DC program (17) for (UBQP) or (16) for (BQP)), gen-
erated by the lower bounding process in B&B, is found with smaller objective value
than that computed by DCA.

(ii) Checking globality of solutions computed by DCA. It is only possible with small sized
(BQP). That is why the dimension of ( BQP) is limited to n = 100 for all test problems,
except for the Maximum Clique Problem where n is up to 200, to ensure the end of the
global algorithms.

It is interesting to report here the comparative results (on the unconstrained binary qua-
dratic programs (UBQP)), which were provided by different global algorithms based on
B&B techniques (as Pardalos-Rodgers [35], Hansen-Jaumard-Meyer [11], Helmberg-Rendl
[13] and Billonnet-Elloumi [5]) and summarized in the very recent work of Billonnet-Ello-
umi [5]. As indicated above, the global algorithms in [5] is the powerful commercial MIQP
solver of CPLEX 8.1 (ILOG 2002) to which the authors incorporated the preprocessing
phase. In DC relaxation (resp. SDP relaxation) this phase amounts to compute the small-
est eigenvalue λ1(Q) of the matrix Q and the solution of an associated convex quadratic
program (resp. a SDP problem) for providing initial solutions to MIQP. The corresponding
global algorithms will be denoted by MIQP* and MIQP**, respectively. The computational
experiments in [5] concern a large set of instances of (UBQP), randomly generated according
to [35] and benchmark instances introduced by Glover-Kochenberger-Alidaee and available
in OR-Library by Beasley [3]. Our numerical experiences are about these test problems for
unconstrained binary quadratic programs (UBQP) and instances of 0-1 Quadratic Knapsack
problem picked from [3] for (constrained) binary quadratic programs. According to [5], due
to tighter bounds provided by SDP relaxation, MIQP** is better than MIQP* and the afore-
mentioned global algorithms. These comparisons, based on the quality (gap) of computed
solutions, #Iter and CPU time, were not always possible. The algorithms are different in
their conception and construction: For instance, the B&B of MIQP has very large #Iter but
each iteration is less costly, while the #Iter of the algorithm in [13] is much smaller, but
each iteration is more expansive. Note that the performance of an algorithm also depends on
the programming skill and the power of the machines on which the experiments are carried
out. As noticed in [5], for a max-cut problem with the 80 nodes G.5 instances of Table 6,
Helmberg and Rendl’s method [13] needs about 1 h and 46 min (average on 2 instances) of
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CPU time on a HP9000/715 workstation while MIQP** needs about 8 min, on the above
Pentium IV PC. But the B&B algorithm in [13] performs 154 nodes when MIQP** performs
8,76,623 nodes. Obviously, the smaller its #Iter is, the better the algorithm will be for high
dimensions.

As indicated in DC/SDP relaxation, and under the precautions mentioned above, our com-
putational experiments on these test problems (UBQP ) show that DCA-B&B-SDP is very
competitive and provides the numerical results comparable to MIQP** in [5] while our #Iter,
like Helmberg-Rendl [13], are much smaller. Note that MIQP** is too expensise to handle
large-scale problems: with n = 100,it failed to find optimal binary solutions after 3 h of
CPU time for many cases. On the other hand, it is worth remarking the nice computational
behaviour of DCA-B&B-SDP for solving 0 − 1 Quadratic Knapsack problem (constrained
binary quadratic programs) with n = 100, in Tables 6 & 7. It found ε-optimal binary solu-
tions with ε = 0 for 4/40(4 instances over 40 test problems), 0.01 ≤ ε ≤ 0.02 for 32/40 ,
ε = 0.03, 0.04, 0.05 for the last four problems; and CPU time is less than 3.41 s for 26/40.

But the remarquable fact, through these numerical experiments, remains the possibility
for DCA to reach ε-optimal solution with only one restarting from initial points computed
by DC/SDP relaxation (solving only one linear program/ SDP problem).

Conclusion

We have investigated a DC programming approach via the local DCA and a global algorithm
combining DCA and B&B with DC/ SDP relaxation techniques for solving binary quadratic
programs (BQP). The binary character of the variable in this problem and exact penalty in
DC programming allow reformulating (BQP) into an appropriate equivalent polyhedral DC
program. That leads to a very simple DCA, consisting of simply solving a finite number
of linear programs with the same constraint set. In particular DCA is explicit for uncon-
strained binary quadratic programs (UBQP). DCA-B&B-new is better than DCA-B&B-old:
each iteration of the former is a little more costly than that one of the latter, but #Iter of the
latter is much smaller. Even they are not able to locate global solutions in all instances, these
combined algorithms can provide DCA with initial points in order for it to reach ε-optimal
binary solutions with #DCA = 1. On the other hand, SDP relaxation technique seems to
be quite relevant to the structure of (BQP) for the construction of relaxed convex quadratic
programs with tight lower bounds. These approaches have been implemented and tested on
three classes of binary quadratic programs: (UBQP), (QK01) and (MCP).

Preliminary numerical simulations show that the combination DCA-B&B-SDP is very
efficient. Its success is due to DCA which is featured by the two facts:

(i) Although being a continuous approach, DCA generates a finite sequence of binary
solutions with decreasing objective values. DCA gives ε -optimal solutions in almost
all cases with only one restarting for the first two classes and exact solutions to (MCP).

(ii) SDP relaxed convex programs provide quite tight lower bounds for the optimal value
of (BQP) to force DCA to tend towards ε -optimal solutions after only one restarting
of DCA in almost all cases.

They confirm the practical observations concerning DCA: DCA is inexpensive and can
be applied to large-scale DC programs to which it gives quite often optimal solutions, while
starting from a good initial point. Finally, the combined DCA-B&B-DC/SDP will be able
to handle large-scale (BQP) if its number of iterations remains in certain reasonable limits.
Otherwise, thanks to its inexpensiveness, DCA still works well to find good local binary
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solutions, but we do not have any more means of checking their globality. Note that our
approaches are easily extended to mixed 0-1 quadratic programming. We hope that the
DCA will be useful for people having to solve large-scale real-world (BQP). Their computa-
tional results will make it possible to strongly appreciate the robustness and effectiveness of
the DCA.

Acknowledgments The authors would like to thank the two referees for their useful comments and sugges-
tions which have considerably improved the presentation of the revised paper.
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